The stabilities and electron structures of Al-Mg clusters with 18 and 20 valence electrons

Regular Article
  • 54 Downloads

Abstract

The spherical jellium model predicts that metal clusters having 18 and 20 valence electrons correspond to the magic numbers and will show specific stabilities. We explore in detail the geometric structures, stabilities and electronic structures of Al-Mg clusters containing 18 and 20 valence electrons by using genetic algorithm combined with density functional theories. The stabilities of the clusters are governed by the electronic configurations and Mg/Al ratios. The clusters with lower Mg/Al ratios are more stable. The molecular orbitals accord with the shell structures predicted by the jellium model but the 2S level interweaves with the 1D levels and the 2S and 1D orbitals form a subgroup. The clusters having 20 valence electrons form closed 1S21P61D102S2 shells and show enhanced stability. The Al-Mg clusters with a valence electron count of 18 do not form closed shells because one 1D orbital is unoccupied. The ionization potential and electron affinity are closely related to the electronic configurations; their values are determined by the subgroups the HOMO or LUMO belong to.

Graphical abstract

Keywords

Clusters and Nanostructures 

Supplementary material

References

  1. 1.
    X. Li, H.B. Wu, X.B. Wang, L.S. Wang, Phys. Rev. Lett. 81, 1909 (1998) ADSCrossRefGoogle Scholar
  2. 2.
    B.K. Rao, P. Jena, J. Chem. Phys. 111, 1890 (1999) ADSCrossRefGoogle Scholar
  3. 3.
    P.J. Roach, W.H. Woodward, A.C. Reber, S.N. Khanna, A.W. Castleman Jr., Phys. Rev. A 81, 195404 (2010) ADSGoogle Scholar
  4. 4.
    L. Cândido, J.N.T. Rabelo, Phys. Rev. B 85, 245404 (2012) ADSCrossRefGoogle Scholar
  5. 5.
    J.J. Melko, A.W. Castleman Jr., Phys. Chem. Chem. Phys. 15, 3173 (2013) CrossRefGoogle Scholar
  6. 6.
    Y. Ouyang, P. Wang, P. Xiang, H. Chen, Y. Du, Comput. Theor. Chem. 68, 984 (2012) Google Scholar
  7. 7.
    H. Wang, Y.J. Ko, X. Zhang, G. Gantefoer, H. Schnoeckel, B.W. Eichhorn, P. Jena, B. Kiran, A.K. Kandalam, K.H. Bowen Jr., J. Chem. Phys. 140, 124309 (2014) ADSCrossRefGoogle Scholar
  8. 8.
    E. Osorio, A. Vasquez, E. Florez, F. Mondragon, K.J. Donald, W. Tiznado, Phys. Chem. Chem. Phys. 15, 2222 (2013) CrossRefGoogle Scholar
  9. 9.
    J. Moc, Chem. Phys. Lett. 466, 116 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    A.C. Reber, S.N. Khanna, P.J. Roach, W.H. Woodward, A.W. Castleman Jr., J. Phys. Chem. A 114, 6071 (2010) CrossRefGoogle Scholar
  11. 11.
    Z. Luo, J.C. Smith, C. Berkdemir, A.W. Castleman Jr., Chem. Phys. Lett. 590, 63 (2013) ADSCrossRefGoogle Scholar
  12. 12.
    M. Arakawa, K. Kohara, A. Terasaki, J. Phys. Chem. C 119, 10981 (2015) CrossRefGoogle Scholar
  13. 13.
    S. Hirabayashi, M. Ichihashi, J. Phys. Chem. A 119, 8557 (2015) CrossRefGoogle Scholar
  14. 14.
    Z. Luo, C.J. Grover, A.C. Reber, S.N. Khanna, A.W. Castleman Jr., J. Am. Chem. Soc. 135, 4307 (2013) CrossRefGoogle Scholar
  15. 15.
    W.D. Knight, K. Clemenger, W.A. de Heer, W.A. Saunders, M.Y. Chou, M.L. Cohen, Phys. Rev. Lett. 52, 2141 (1984) ADSCrossRefGoogle Scholar
  16. 16.
    M. Brack, Rev. Mod. Phys. 65, 677 (1993) ADSCrossRefGoogle Scholar
  17. 17.
    K. Clemenger, Phys. Rew. B 32, 1359 (1985) ADSCrossRefGoogle Scholar
  18. 18.
    K.E. Schriver, J.L. Persson, E.C. Honea, R.L. Whetten, Phys. Rev. Lett. 64, 2539 (1990) ADSCrossRefGoogle Scholar
  19. 19.
    W.D. Knight, W.A. de Heer, W.A. Saunders, K. Clemenger, M.Y. Chou, M.L. Cohen, Chem. Phys. Lett. 134, 1 (1987) ADSCrossRefGoogle Scholar
  20. 20.
    W.A. De Heer, P. Milani, A. Chatelain, Phys. Rev. Lett. 63, 2834 (1989) ADSCrossRefGoogle Scholar
  21. 21.
    S.N. Khanna, P. Jena, Phys. Rev. Lett. 69, 1664 (1992) ADSCrossRefGoogle Scholar
  22. 22.
    J. Lermé, M. Pellarin, J.L. Vialle, B. Baguenard, M. Broyer, Phys. Rev. Lett. 68, 2818 (1992) ADSCrossRefGoogle Scholar
  23. 23.
    E. Cottancin, M. Pellarin, J. Lermé, B. Baguenard, B. Palpant, J.L. Vialle, M. Broyer, J. Chem. Phys. 107, 757 (1997) ADSCrossRefGoogle Scholar
  24. 24.
    B. Baguenard, M. Pellarin, J. Lermé, J.L. Vialle, M. Broyer, J. Chem. Phys. 100, 754 (1994) ADSCrossRefGoogle Scholar
  25. 25.
    D.M. Deaven, K.M. Ho, Phys. Rev. Lett. 75, 288 (1995) ADSCrossRefGoogle Scholar
  26. 26.
    R.L. Johnston, Dalton Trans. 22, 4193 (2003) ADSCrossRefGoogle Scholar
  27. 27.
    J.J. Zhao, R.H. Xie, J. Comput. Theor. Nanosci. 1, 117 (2004) CrossRefGoogle Scholar
  28. 28.
    B. Delley, J. Chem. Phys. 92, 508 (1990) ADSCrossRefGoogle Scholar
  29. 29.
    B. Delley, J. Chem. Phys. 113, 7756 (2000) ADSCrossRefGoogle Scholar
  30. 30.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  31. 31.
    S. Paranthaman, K. Hong, J. Kim, D.E. Kim, T.K. Kim, J. Phys. Chem. A 117, 9293 (2013) CrossRefGoogle Scholar
  32. 32.
    V.O. Kiohara, E.F.V. Carvalho, C.W.A. Paschoal, F.B.C. Machado, O. Roberto-Neto, Chem. Phys. Lett. 568, 42 (2013) ADSCrossRefGoogle Scholar
  33. 33.
    C. Adamo, V. Barone, J. Chem. Phys. 110, 6158 (1999) ADSCrossRefGoogle Scholar
  34. 34.
    C. Adamo, V. Barone, J. Chem. Phys. 108, 664 (1998) ADSCrossRefGoogle Scholar
  35. 35.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel et al., Gaussian 09, Revision D.01 (Gaussian, Inc., Wallingford, CT, 2013) Google Scholar
  36. 36.
    W.C. Martin, R. Zalubas, J. Phys. Chem. Ref. Data 8, 817 (1979) ADSCrossRefGoogle Scholar
  37. 37.
    V. Kaufman, W.C. Martin, J. Phys. Chem. Ref. Data 20, 83 (1991) ADSCrossRefGoogle Scholar
  38. 38.
    M. Scheer, R.C. Bilodeau, J. Thogresen, H.K. Haugen, Phys. Rev. A 57, R1493 (1998) ADSCrossRefGoogle Scholar
  39. 39.
    T. Andersen, Phys. Rep. 394, 157 (2004) ADSCrossRefGoogle Scholar
  40. 40.
    D.M. Cox, D.J. Trevor, R.L. Whetten, A. Kaldor, J. Phys. Chem. 92, 421 (1988) CrossRefGoogle Scholar
  41. 41.
    T.H. Upton, Phys. Rev. Lett. 56, 2168 (1986) ADSCrossRefGoogle Scholar
  42. 42.
    C.G. Zhan, J.A. Nichols, D.A. Dixon, J. Phys. Chem. A 107, 4184 (2003) CrossRefGoogle Scholar
  43. 43.
    M.K. Harbola, Proc. Natl. Acad. Sci. USA 89, 1036 (1992) ADSCrossRefGoogle Scholar
  44. 44.
    A.D. Becke, K.E. Edgecombe, J. Chem. Phys. 92, 5397 (1990) ADSCrossRefGoogle Scholar
  45. 45.
    B. Silvi, A. Savin, Nature 371, 683 (1994) ADSCrossRefGoogle Scholar
  46. 46.
    A. Savin, R. Nesper, S. Wengert, T.F. Fässler, Angew. Chem. Int. Edn. 36, 1808 (1997) CrossRefGoogle Scholar
  47. 47.
    R.F.W. Bader, Chem. Rev. 91, 893 (1991) CrossRefGoogle Scholar
  48. 48.
    T.A. Keith, AIMAll Version 11.12.19 (Overland Park KS, TK Gristmill Software, USA, 2011) Google Scholar
  49. 49.
    H. Wang, X. Zhang, Y.J. Ko, A. Grubisic, X. Li, G. Ganteför, H. Schnöckel, B.W. Eichhorn, M.S. Lee, P. Jena, A.K. Kandalam, B. Kiran, K.H. Bowen, J. Chem. Phys. 140, 054301 (2014) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.College of Physics and Electronic Engineering, Northwest Normal UniversityLanzhouP.R. China

Personalised recommendations