Skip to main content
Log in

Bell states and entanglement of two-dimensional polar molecules in electric fields

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Entanglement generated from polar molecules of two-dimensional rotation is investigated in a static electric field. The electric field modulates the rotational properties of molecules, leading to distinctive entanglement. The concurrence is used to estimate the degree of entanglement. When the electric field is applied parallel or perpendicular to the intermolecular direction, the concurrences reveal two overlapping features. Such a pronounced signature corresponds to the coexistence of all Bell-like states. The characteristics of Bell-like states and overlapping concurrences are kept independent of the modulation of dipole–field and dipole–dipole interactions. On the contrary, the Bell-like states fail to coexist in other field directions, reflecting nonoverlapping concurrences. Furthermore, the thermal effect on the entanglement is analyzed for the Bell-like states. Dissimilar suppressed concurrences occur due to different energy structures for the two specific field directions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Wilk, S.C. Webster, A. Kuhn, G. Rempe, Science 317, 488 (2007)

    Article  ADS  Google Scholar 

  2. B. Weber, H.P. Specht, T. Müller, J. Bochmann, M. Mücke, D.L. Moehring, G. Rempe, Phys. Rev. Lett. 102, 030501 (2009)

    Article  ADS  Google Scholar 

  3. P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, J. Wrachtrup, Science 320, 1326 (2008)

    Article  ADS  Google Scholar 

  4. M.D. Shulman, O.E. Dial, S.P. Harvey, H. Bluhm, V. Umansky, A. Yacoby, Science 336, 202 (2012)

    Article  ADS  Google Scholar 

  5. L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 517 (2008)

    Article  ADS  Google Scholar 

  6. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  Google Scholar 

  7. C.H. Bennett, S.J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  8. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Żukowski, A. Zeilinger, M.A. Horne, A.K. Ekert, Phys. Rev. Lett. 71, 4287 (1993)

    Article  ADS  Google Scholar 

  10. S.F. Yelin, K. Kirby, R. Côté, Phys. Rev. A 74, R050301 (2006)

    Article  ADS  Google Scholar 

  11. E. Kuznetsova, R. Côté, K. Kirby, S.F. Yelin, Phys. Rev. A 78, 012313 (2008)

    Article  ADS  Google Scholar 

  12. K. Mishima, K. Yamashita, Chem. Phys. 361, 106 (2009)

    Article  ADS  Google Scholar 

  13. P. Pellegrini, S. Vranckx, M. Desouter-Lecomte, Phys. Chem. Chem. Phys. 13, 18864 (2011)

    Article  Google Scholar 

  14. J. Zhu, S. Kais, Q. Wei, D. Herschbach, B. Friedrich, J. Chem. Phys. 138, 024104 (2013)

    Article  ADS  Google Scholar 

  15. F. Herrera, Y. Cao, S. Kais, K.B. Whaley, New J. Phys. 16, 075001 (2014)

    Article  ADS  Google Scholar 

  16. P. Milman, A. Keller, E. Charron, O. Atabek, Phys. Rev. Lett. 99, 130405 (2007)

    Article  ADS  Google Scholar 

  17. P. Milman, A. Keller, E. Charron, O. Atabek, Eur. Phys. J. D 53, 383 (2009)

    Article  ADS  Google Scholar 

  18. D. DeMille, Phys. Rev. Lett. 88, 067901 (2002)

    Article  ADS  Google Scholar 

  19. M. Karra, K. Sharma, B. Friedrich, S. Kais, D. Herschbach, J. Chem. Phys. 144, 094301 (2016)

    Article  ADS  Google Scholar 

  20. J.X. Han, Y. Hu, Y. Jin, G.F. Zhang, J. Chem. Phys. 144, 134308 (2016)

    Article  ADS  Google Scholar 

  21. Q. Wei, S. Kais, B. Friedrich, D. Herschbach, J. Chem. Phys. 134, 124107 (2011)

    Article  ADS  Google Scholar 

  22. Q. Wei, S. Kais, B. Friedrich, D. Herschbach, J. Chem. Phys. 135, 154102 (2011)

    Article  ADS  Google Scholar 

  23. E. Charron, P. Milman, A. Keller, O. Atabek, Phys. Rev. A 75, 033414 (2007)

    Article  ADS  Google Scholar 

  24. K. Mishima, K. Yamashita, J. Chem. Phys. 130, 034108 (2009)

    Article  ADS  Google Scholar 

  25. D.H. McIntyre, Quantum mechanics: a paradigms approach (Peason Addison-Wesley, San Francisco, 2012)

  26. K. Svensson, L. Bengtsson, J. Bellman, M. Hassel, M. Persson, S. Andersson, Phys. Rev. Lett. 83, 124 (1999)

    Article  ADS  Google Scholar 

  27. L. Bengtsson, K. Svensson, M. Hassel, J. Bellman, M. Persson, S. Andersson, Phys. Rev. B 61, 16921 (2000)

    Article  ADS  Google Scholar 

  28. D. Teillet-Billy, J.P. Gauyacq, Surf. Sci. 502–503, 358 (2002)

    Article  Google Scholar 

  29. U. Landman, G.G. Kleiman, C.L. Cleveland, E. Kuster, R.N. Barnett, J.W. Gadzuk, Phys. Rev. B 29, 4313 (1984)

    Article  ADS  Google Scholar 

  30. Y.T. Shih, Y.Y. Liao, D.S. Chuu, Phys. Rev. B 68, 075402 (2003)

    Article  ADS  Google Scholar 

  31. H. Shima, T. Nakayama, Phys. Rev. A 70, 013401 (2004)

    Article  ADS  Google Scholar 

  32. H. Shima, T. Nakayama, Phys. Rev. B 71, 155210 (2005)

    Article  ADS  Google Scholar 

  33. T. Iwata, M. Watanabe, Phys. Rev. B 81, 014105 (2010)

    Article  ADS  Google Scholar 

  34. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  35. M.C. Arnesen, S. Bose, V. Vedral, Phys. Rev. Lett. 87, 017901 (2001)

    Article  ADS  Google Scholar 

  36. X. Wang, K. Mϕlmer, Eur. Phys. J. D 18, 385 (2002)

    ADS  Google Scholar 

  37. K. von Meyenn, Z. Phys. 231, 154 (1970)

    Article  ADS  Google Scholar 

  38. J.M. Rost, J.C. Griffin, B. Friedrich, D.R. Herschbach, Phys. Rev. Lett. 68, 1299 (1992)

    Article  ADS  Google Scholar 

  39. T. Yu, J.H. Eberly, Phys. Rev. B 66, 193306 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Yen Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, YY. Bell states and entanglement of two-dimensional polar molecules in electric fields. Eur. Phys. J. D 71, 277 (2017). https://doi.org/10.1140/epjd/e2017-80018-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80018-9

Keywords

Navigation