Bell states and entanglement of two-dimensional polar molecules in electric fields

Regular Article
  • 6 Downloads

Abstract

Entanglement generated from polar molecules of two-dimensional rotation is investigated in a static electric field. The electric field modulates the rotational properties of molecules, leading to distinctive entanglement. The concurrence is used to estimate the degree of entanglement. When the electric field is applied parallel or perpendicular to the intermolecular direction, the concurrences reveal two overlapping features. Such a pronounced signature corresponds to the coexistence of all Bell-like states. The characteristics of Bell-like states and overlapping concurrences are kept independent of the modulation of dipole–field and dipole–dipole interactions. On the contrary, the Bell-like states fail to coexist in other field directions, reflecting nonoverlapping concurrences. Furthermore, the thermal effect on the entanglement is analyzed for the Bell-like states. Dissimilar suppressed concurrences occur due to different energy structures for the two specific field directions.

Graphical abstract

Keywords

Molecular Physics and Chemical Physics 

References

  1. 1.
    T. Wilk, S.C. Webster, A. Kuhn, G. Rempe, Science 317, 488 (2007) ADSCrossRefGoogle Scholar
  2. 2.
    B. Weber, H.P. Specht, T. Müller, J. Bochmann, M. Mücke, D.L. Moehring, G. Rempe, Phys. Rev. Lett. 102, 030501 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, J. Wrachtrup, Science 320, 1326 (2008) ADSCrossRefGoogle Scholar
  4. 4.
    M.D. Shulman, O.E. Dial, S.P. Harvey, H. Bluhm, V. Umansky, A. Yacoby, Science 336, 202 (2012) ADSCrossRefGoogle Scholar
  5. 5.
    L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 517 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    C.H. Bennett, S.J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992) ADSCrossRefGoogle Scholar
  8. 8.
    C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993) ADSCrossRefGoogle Scholar
  9. 9.
    M. Żukowski, A. Zeilinger, M.A. Horne, A.K. Ekert, Phys. Rev. Lett. 71, 4287 (1993) ADSCrossRefGoogle Scholar
  10. 10.
    S.F. Yelin, K. Kirby, R. Côté, Phys. Rev. A 74, R050301 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    E. Kuznetsova, R. Côté, K. Kirby, S.F. Yelin, Phys. Rev. A 78, 012313 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    K. Mishima, K. Yamashita, Chem. Phys. 361, 106 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    P. Pellegrini, S. Vranckx, M. Desouter-Lecomte, Phys. Chem. Chem. Phys. 13, 18864 (2011) CrossRefGoogle Scholar
  14. 14.
    J. Zhu, S. Kais, Q. Wei, D. Herschbach, B. Friedrich, J. Chem. Phys. 138, 024104 (2013) ADSCrossRefGoogle Scholar
  15. 15.
    F. Herrera, Y. Cao, S. Kais, K.B. Whaley, New J. Phys. 16, 075001 (2014) ADSCrossRefGoogle Scholar
  16. 16.
    P. Milman, A. Keller, E. Charron, O. Atabek, Phys. Rev. Lett. 99, 130405 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    P. Milman, A. Keller, E. Charron, O. Atabek, Eur. Phys. J. D 53, 383 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    D. DeMille, Phys. Rev. Lett. 88, 067901 (2002) ADSCrossRefGoogle Scholar
  19. 19.
    M. Karra, K. Sharma, B. Friedrich, S. Kais, D. Herschbach, J. Chem. Phys. 144, 094301 (2016) ADSCrossRefGoogle Scholar
  20. 20.
    J.X. Han, Y. Hu, Y. Jin, G.F. Zhang, J. Chem. Phys. 144, 134308 (2016) ADSCrossRefGoogle Scholar
  21. 21.
    Q. Wei, S. Kais, B. Friedrich, D. Herschbach, J. Chem. Phys. 134, 124107 (2011) ADSCrossRefGoogle Scholar
  22. 22.
    Q. Wei, S. Kais, B. Friedrich, D. Herschbach, J. Chem. Phys. 135, 154102 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    E. Charron, P. Milman, A. Keller, O. Atabek, Phys. Rev. A 75, 033414 (2007) ADSCrossRefGoogle Scholar
  24. 24.
    K. Mishima, K. Yamashita, J. Chem. Phys. 130, 034108 (2009) ADSCrossRefGoogle Scholar
  25. 25.
    D.H. McIntyre, Quantum mechanics: a paradigms approach (Peason Addison-Wesley, San Francisco, 2012) Google Scholar
  26. 26.
    K. Svensson, L. Bengtsson, J. Bellman, M. Hassel, M. Persson, S. Andersson, Phys. Rev. Lett. 83, 124 (1999) ADSCrossRefGoogle Scholar
  27. 27.
    L. Bengtsson, K. Svensson, M. Hassel, J. Bellman, M. Persson, S. Andersson, Phys. Rev. B 61, 16921 (2000) ADSCrossRefGoogle Scholar
  28. 28.
    D. Teillet-Billy, J.P. Gauyacq, Surf. Sci. 502–503, 358 (2002) CrossRefGoogle Scholar
  29. 29.
    U. Landman, G.G. Kleiman, C.L. Cleveland, E. Kuster, R.N. Barnett, J.W. Gadzuk, Phys. Rev. B 29, 4313 (1984) ADSCrossRefGoogle Scholar
  30. 30.
    Y.T. Shih, Y.Y. Liao, D.S. Chuu, Phys. Rev. B 68, 075402 (2003) ADSCrossRefGoogle Scholar
  31. 31.
    H. Shima, T. Nakayama, Phys. Rev. A 70, 013401 (2004) ADSCrossRefGoogle Scholar
  32. 32.
    H. Shima, T. Nakayama, Phys. Rev. B 71, 155210 (2005) ADSCrossRefGoogle Scholar
  33. 33.
    T. Iwata, M. Watanabe, Phys. Rev. B 81, 014105 (2010) ADSCrossRefGoogle Scholar
  34. 34.
    W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998) ADSCrossRefGoogle Scholar
  35. 35.
    M.C. Arnesen, S. Bose, V. Vedral, Phys. Rev. Lett. 87, 017901 (2001) ADSCrossRefGoogle Scholar
  36. 36.
    X. Wang, K. Mϕlmer, Eur. Phys. J. D 18, 385 (2002) ADSGoogle Scholar
  37. 37.
    K. von Meyenn, Z. Phys. 231, 154 (1970) ADSCrossRefGoogle Scholar
  38. 38.
    J.M. Rost, J.C. Griffin, B. Friedrich, D.R. Herschbach, Phys. Rev. Lett. 68, 1299 (1992) ADSCrossRefGoogle Scholar
  39. 39.
    T. Yu, J.H. Eberly, Phys. Rev. B 66, 193306 (2002) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Applied PhysicsNational University of KaohsiungKaohsiungTaiwan

Personalised recommendations