Low-energy collisions of helium clusters with size-selected cobalt cluster ions

Regular Article
  • 27 Downloads

Abstract

Collisions of helium clusters with size-selected cobalt cluster ions, Com+ (m ≤ 5), were studied experimentally by using a merging beam technique. The product ions, Com+Hen (cluster complexes), were mass-analyzed, and this result indicates that more than 20 helium atoms can be attached onto Com+ at the relative velocities of 103 m/s. The measured size distributions of the cluster complexes indicate that there are relatively stable complexes: Co2+Hen (n = 2, 4, 6, and 12), Co3+Hen (n = 3, 6), Co4+He4, and Co5+Hen (n = 3, 6, 8, and 10). These stabilities are explained in terms of their geometric structures. The yields of the cluster complexes were also measured as a function of the relative velocity (1 × 102−4 × 103 m/s), and this result demonstrates that the main interaction in the collision process changes with the increase of the collision energy from the electrostatic interaction, which includes the induced deformation of HeN, to the hard-sphere interaction.

Graphical abstract

Keywords

Clusters and Nanostructures 

Supplementary material

References

  1. 1.
    W. Demtröder, Laser Spectroscopy, Vol. 2, 4th ed. (Springer-Verlag, Berlin, Germany, 2008)Google Scholar
  2. 2.
    A. Scheidemann, J.P. Toennies, J.A. Northby, Phys. Rev. Lett. 64, 1899 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    S. Goyal, D.L. Schutt, G. Scoles, Phys. Rev. Lett. 69, 933 (1992)ADSCrossRefGoogle Scholar
  4. 4.
    S. Goyal, D.L. Schutt, G. Scoles, J. Phys. Chem. 97, 2236 (1993)CrossRefGoogle Scholar
  5. 5.
    A. Scheidemann, B. Schilling, J.P. Toennies, J. Phys. Chem. 97, 2128 (1993)CrossRefGoogle Scholar
  6. 6.
    J.P Toennies, A.F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004)CrossRefGoogle Scholar
  7. 7.
    B.E. Callicoatt, D.D. Mar, V.A. Apkarian, K.C. Janda, J. Chem. Phys. 105, 7872 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    W.K. Lewis, B.E. Applegate, J. Sztáray, B. Sztáray, T. Baer, R.J. Bemish, R.E. Miller, J. Am. Chem. Soc. 126, 11283 (2004)CrossRefGoogle Scholar
  9. 9.
    S. Yang, S.M. Brereton, M.D. Wheeler, A.M. Ellis, Phys. Chem. Chem. Phys. 7, 4081 (2005)Google Scholar
  10. 10.
    P. Bartl, C. Leidlmair, S. Denifl, P. Scheier, O. Echt, ChemPhysChem 14, 227 (2013)CrossRefGoogle Scholar
  11. 11.
    S. Müller, M. Mudrich, F. Stienkemeier, J. Chem. Phys. 131, 044319 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    T. Döppner, T. Diederich, S. Göde, A. Przystawik, J. Tiggesbäumker, K.-H. Meiwes-Broer, J. Chem. Phys. 126 244513 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    J. Tiggesbäumker, F. Stienkemeier, Phys. Chem. Chem. Phys. 9, 4748 (2008)CrossRefGoogle Scholar
  14. 14.
    P. Bartl, C. Leidlmair, S. Denifl, P. Scheier, O. Echt, J. Phys. Chem. A 118, 8050 (2014)CrossRefGoogle Scholar
  15. 15.
    F.F. da Silva, P. Waldburger, S. Jaksch, A. Mauracher, S. Denifl, O. Echt, T.D. Märk, P. Scheier, Chem. Eur. J. 15, 7101 (2009)CrossRefGoogle Scholar
  16. 16.
    C. Leidlmair, Y. Wang, P. Bartl, H. Schöbel, S. Denifl, M. Probst, M. Alcamí, F. Martín, H. Zettergren, K. Hansen, O. Echt, P. Scheier, Phys. Rev. Lett. 108, 076101 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    M. Harnisch, N. Weinberger, S. Denifl, P. Scheier, O. Echt, Mol. Phys. 113, 2191 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    M. Fárnıìk, J.P. Toennies, J. Chem. Phys. 122, 014307 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    P. Claas, S.-O. Mende, F. Stienkemeier, Rev. Sci. Instrum. 74, 4071 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    T.M. Falconer, W.K. Lewis, R.J. Bemish, R.E. Miller, G.L. Glish, Rev. Sci. Instrum. 81, 054101 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    F. Bierau, P. Kupser, G. Meijer, G. von Helden, Phys. Rev. Lett. 105, 133402 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    F. Filsinger, D.-S. Ahn, G. Meijer, G. von Helden, Phys. Chem. Chem. Phys. 14, 13370 (2012)CrossRefGoogle Scholar
  23. 23.
    J. Zhang, L. Chen, W.M. Freund, W. Kong, J. Chem. Phys. 143, 074201 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    K. Hiraoka, T. Mori, J. Chem. Phys. 92, 4408 (1990)ADSCrossRefGoogle Scholar
  25. 25.
    T.M. Kojima, N. Kobayashi, Y. Kaneko, Z. Phys. D 22, 645 (1992)ADSCrossRefGoogle Scholar
  26. 26.
    T.M. Kojima, N. Kobayashi, Y. Kaneko, Z. Phys. D 23, 181 (1992)ADSCrossRefGoogle Scholar
  27. 27.
    H. Tanuma, J. Sanderson, N. Kobayashi, J. Phys. Soc. Jpn. 68, 2570 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    K.R. Asmis, G. Meijer, M. Brümmer, C. Kaposta, G. Santambrogio, L. Wöste, J. Sauer, J. Chem. Phys. 120, 6461 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    K. Nauta, D.T. Moore, P.L. Stiles, R.E. Miller, Science 292, 481 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    H. Odaka, M. Ichihashi, RSC Adv. 5, 78247 (2015)CrossRefGoogle Scholar
  31. 31.
    M.N. Slipchenko, S. Kuma, T. Momose, A.F. Vilesov, Rev. Sci. Instrum. 73, 3600 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    B.E. Callicoatt, K. Förde, L.F. Jung, T. Ruchti, K.C. Janda, J. Chem. Phys. 109, 10195 (1998)ADSCrossRefGoogle Scholar
  33. 33.
    S. Denifl, M. Stano, A. Stamatovic, P. Scheier, T.D. Märk, J. Chem. Phys. 124, 054320 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    O.F. Hagena, W. Obert, J. Chem. Phys. 56, 1793 (1972)ADSCrossRefGoogle Scholar
  35. 35.
    O.F. Hagena, Surf. Sci. 106, 101 (1981)ADSCrossRefGoogle Scholar
  36. 36.
    O.F. Hagena, Rev. Sci. Instrum. 63, 2374 (1992)ADSCrossRefGoogle Scholar
  37. 37.
    R.A. Smith, T. Ditmire, J.W.G. Tisch, Rev. Sci. Instrum. 69, 3798 (1998)ADSCrossRefGoogle Scholar
  38. 38.
    U. Buck, R. Krohne, J. Chem. Phys. 105, 5408 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    R. Karnbach, M. Joppien, J. Stapelfeldt, J. Wörmer, T. Möller, Rev. Sci. Instrum. 64, 2838 (1993)ADSCrossRefGoogle Scholar
  40. 40.
    M. Lewerenz, B. Schilling, J.P. Toennies, Chem. Phys. Lett. 206, 381 (1993)ADSCrossRefGoogle Scholar
  41. 41.
    L.A. der Lan, P. Bartl, C. Leidlmair, R. Jochum, S. Denifl, O. Echt, P. Scheier, Chem. Eur. J. 18, 4411 (2012)CrossRefGoogle Scholar
  42. 42.
    F. Marinetti, L. Uranga-Piña, E. Coccia, D. López-Durán, E. Bodo, F.A. Gianturco, J. Phys. Chem. A 111, 12289 (2007)CrossRefGoogle Scholar
  43. 43.
    K.R. Atkins, Phys. Rev. 116¸1339 (1959)ADSCrossRefGoogle Scholar
  44. 44.
    M. Kuhn, M. Renzler, J. Postler, S. Ralser, S. Spieler, M. Simpson, H. Linnartz, A.G.G.M. Tielens, J. Cami, A. Mauracher, Y. Wang, M. Alcamí, F. Martín, M.K. Beyer, R. Wester, A. Lindinger, P. Scheier, Nat. Commun. 7, 13550 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    S. Hirabayashi, R. Okawa, M. Ichihashi, Y. Kawazoe, T. Kondow, J. Chem. Phys. 130, 164304 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    R. Gehrke, P. Gruene, A. Fielicke, G. Meijer, K. Reuter, J. Chem. Phys. 130, 034306 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    R.D. Levine, Molecular Reaction Dynamics (Cambridge University Press, Cambridge, UK, 2005)Google Scholar
  48. 48.
    M. Lewerenz, B. Schilling, J.P. Toennies, J. Chem. Phys. 102, 8191 (1995)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.East Tokyo Laboratory, Genesis Research InstituteChibaJapan
  2. 2.Cluster Research Laboratory, Toyota Technological Institute: in East Tokyo Laboratory, Genesis Research InstituteChibaJapan

Personalised recommendations