Dust-acoustic shock excitations in κ-nonthermal electron depleted dusty plasmas

  • Mariya Ferdousi
  • Sharmin Sultana
  • Mohammad Mobarak Hossen
  • Md. Rashed Miah
  • A. A. Mamun
Regular Article
  • 31 Downloads

Abstract

A theoretical investigation on the characteristics of dust-acoustic shock waves (DASHWs) in an unmagnetized multi-ion dusty plasma has been made both theoretically and analytically. The plasma medium is assumed to compose of arbitrarily charged inertial dusts, Boltzmann distributed negatively charged heavy ions, positively charged light ions, and superthermal (excess energetic) electrons (where superthermality is modelled via the κ-distribution). The reductive perturbation technique is employed in order to derive the nonlinear time evolution Burgers type equation. The basic properties of DASHWs are analysed via the solution of Burgers equation. It is observed that different plasma parameters (electrons superthermality, dust temperature, ion temperature, dust kinematic viscosity, etc.) influence the propagation of DASHWs. Both polarity (positive and negative potential) shock waves are also found to exists. The study of our model under consideration is helpful for explaining the propagation of DASHWs in space observations, where superthermal electrons and Maxwellian ions are accountable.

Graphical abstract

Keywords

Plasma Physics 

References

  1. 1.
    T.A. Ellis, J.S. Neff, Icarus 91, 280 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    M. Horányi, Annu. Rev. Astron. Astrophys. 34, 383 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    O. Havnes, J. Trøim, T. Blix, W. Mortensen, L. Næsheim, E. Thrane, T. Tønnesen, J. Geophys. Res. 101, 10839 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    F.S. Ali, M.A. Ali, R.A. Ali, I.I. Inculet, J. Electrostatics 45, 139 (1998)CrossRefGoogle Scholar
  5. 5.
    H. Zhao, G.S.P. Castle, I.I. Inculet, J. Electrostatics 55, 261 (2002)CrossRefGoogle Scholar
  6. 6.
    H. Zhao, G.S.P. Castle, I.I. Inculet, A.G. Bailey, IEEE Trans. Ind. Appl. 39, 612 (2003)CrossRefGoogle Scholar
  7. 7.
    V.W. Chow, D.A. Mendis, M.J. Rosenberg, Geophys. Res. 98, 19065 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    M. Rosenberg, D.A. Mendis, IEEE Trans. Plasma Sci. 23, 177 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    V.E. Fortov, A.P. Nefedov, O.S. Vaulina, A.M. Lipaev, V.I. Molotkov, A.A. Samaryan, V.P. Nikitskii, A.I. Ivanov, S.F. Savin, A.V. Kalmykov, A.Ya. Solov’ev, P.V. Vinogradov, J. Exp. Theor. Phys. 87, 1087 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    M. Rosenberg, D.A. Mendis, D.P. Sheehan, IEEE Trans. Plasma Sci. 27, 239 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    P.K. Shukla, A.A. Mamun, Introduction to Dusty Plasma Physics (Institute of Physics, Bristol, 2002)Google Scholar
  12. 12.
    P.K. Shukla, Phys. Plasmas. 8, 1791 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    A. Barkan, N. D’Angelo, R. Merlino, Planet. Space Sci. 44, 239 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    R.L. Merlino, A. Barkan, C. Thompson, N. D’Angelo, Phys. Plasmas 5, 1607 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    H. Massey, Negative Ions, 3rd edn. (Cambridge University Press, Cambridge, 1976)Google Scholar
  16. 16.
    R.A. Gottscho, C.E. Gaebe, IEEE Trans. Plasma Sci. 14, 92 (1986)ADSCrossRefGoogle Scholar
  17. 17.
    M. Bascal, G.W. Hamilton, Phys. Rev. Lett. 42, 1538 (1979)ADSCrossRefGoogle Scholar
  18. 18.
    R. Ichiki, S. Yoshimura, T. Watanabe, Y. Nakamura, Y. Kawai, Phys. Plasmas. 9, 4481 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    S.J. Buchsbaum, Phys. Fluids 3, 418 (1960)ADSCrossRefGoogle Scholar
  20. 20.
    S.A. Ema, M. Ferdousi, S. Sultana, A.A. Mamun, Eur. Phys. J. Plus 130, 46 (2015)CrossRefGoogle Scholar
  21. 21.
    M.R. Hossen, M.A. Hossen, S. Sultana, A.A. Mamun, Astrophys. Space Sci. 357, 34 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    V.L. Yakimenko, Tech. Phys. 7, 117 (1962)MathSciNetGoogle Scholar
  23. 23.
    M.A. Gintsburg, Geomagn. Aeronomy 3, 610 (1963)ADSGoogle Scholar
  24. 24.
    S. Sultana, A.A. Mamun, Astrophys. Space Sci. 349, 229 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    M. Mobarak Hossen, M.S. Alam, S. Sultana, A.A. Mamun, Phys. Plasma 23, 023703 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    M. Mobarak Hossen, M.S. Alam, S. Sultana, A.A. Mamun, Eur. Phys. J. D 70, 252 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    V.M. Vasyliunas, J. Geophys. Res. 73, 2839 (1968)ADSCrossRefGoogle Scholar
  28. 28.
    D. Summers, R.M. Thorne, Phys. Fluids B 3, 1835 (1991)ADSCrossRefGoogle Scholar
  29. 29.
    R.L. Mace, M.A. Hellberg, Phys. Plasmas 2, 2098 (1995)ADSCrossRefGoogle Scholar
  30. 30.
    S. Sultana, G. Sarri, I. Kourkis, Phys. Plasmas 19, 012310 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    M.M. Masud, S. Sultana, A.A. Mamun, Astrophys. Space Sci. 348, 99 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    M.S. Alam, M.M. Masud, A.A. Mamun, Chin. Phys. B 22, 115202 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    M. Ferdousi, A.A. Mamun, Braz. J. Phys. 45, 244 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    M. Ferdousi, M.R. Miah, S. Sultana, A.A. Mamun, Braz. J. Phys. 45, 89 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    M. Ferdousi, S. Yasmin, S. Ashraf, A.A. Mamun, Chin. Phys. Lett. 32, 015201 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    M. Ferdousi, M.R. Miah, S. Sultana, A.A. Mamun, Astrophys. Space Sci. 360, 43 (2015)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Mariya Ferdousi
    • 1
  • Sharmin Sultana
    • 1
  • Mohammad Mobarak Hossen
    • 1
  • Md. Rashed Miah
    • 1
  • A. A. Mamun
    • 1
  1. 1.Department of PhysicsJahangirnagar UniversityDhakaBangladesh

Personalised recommendations