Synthesis and characterization of CdTe nanostructures grown by RF magnetron sputtering method

  • Elaheh Akbarnejad
  • Mahmood Ghoranneviss
  • Mohammad Reza Hantehzadeh
Regular Article
  • 19 Downloads

Abstract

In this paper, we synthesize Cadmium Telluride nanostructures by radio frequency (RF) magnetron sputtering system on soda lime glass at various thicknesses. The effect of CdTe nanostructures thickness on crystalline, optical and morphological properties has been studied by means of X-ray diffraction (XRD), UV-VIS-NIR spectrophotometry, field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM), respectively. The XRD parameters of CdTe nanostructures such as microstrain, dislocation density, and crystal size have been examined. From XRD analysis, it could be assumed that increasing deposition time caused the formation of the wurtzite hexagonal structure of the sputtered films. Optical properties of the grown nanostructures as a function of film thickness have been observed. All the films indicate more than 60% transmission over a wide range of wavelengths. The optical band gap values of the films have obtained in the range of 1.62–1.45 eV. The results indicate that an RF sputtering method succeeded in depositing of CdTe nanostructures with high purity and controllable physical properties, which is appropriate for photovoltaic and nuclear detector applications.

Graphical abstract

Keywords

Clusters and Nanostructures 

References

  1. 1.
    S. Chander, M.S. Dhaka, Physica E 73, 35 (2015)CrossRefADSGoogle Scholar
  2. 2.
    Y.O. Choi, N.H. Kim, J.S. Park, W.S. Lee, Mater. Sci. Eng. B 171, 73 (2010)CrossRefGoogle Scholar
  3. 3.
    S.D. Gunjal, Y.B. Khollam, S.R. Jadkar, T. Shripathi, V.G. Sathe, P.N. Shelke, M.G. Takwale, K.C. Mohite, Solar Energy 106, 56 (2014)CrossRefADSGoogle Scholar
  4. 4.
    M. Pattabi, S. Krishnan, G. Sanjeev, X. Mathew, Solar Energy 81, 111 (2007)CrossRefADSGoogle Scholar
  5. 5.
    S.K. Pandey, U. Tiwari, R. Raman, C. Prakash, V. Krishna, V. Dutta, K. Zimik, Thin Solid Films 473, 54 (2005)CrossRefADSGoogle Scholar
  6. 6.
    D.L. Bätzner, A. Romeo, M. Terheggen, M. Döbeli, H. Zogg, A.N. Tiwari, Thin Solid Films 451–452, 536 (2004)CrossRefGoogle Scholar
  7. 7.
    A. Romeo, D.L. Bätzner, H. Zogg, C. Vignali, A.N. Tiwari, Solar Energy Mater. Solar Cells 67, 311 (2001)CrossRefGoogle Scholar
  8. 8.
    A.A. Ikram, D.T. Crouse, M.M. Crouse, Mater. Lett. 61, 3666 (2007)CrossRefGoogle Scholar
  9. 9.
    B.B. Ismail, R.D. Gould, Phys. Status Solidi A 115, 237 (1989)CrossRefADSGoogle Scholar
  10. 10.
    A. Cavallini, B. Fraboni, W. Dusi, M. Zanarini, M. Hage-Ali, P. Siffert, J. Appl. Phys. 89, 4664 (2001)CrossRefADSGoogle Scholar
  11. 11.
    T. Takahashi, S. Watanabe, IEEE Trans. Nucl. Sci. 48, 950 (2001)CrossRefADSGoogle Scholar
  12. 12.
    A. Owens, A. Peacock, Nucl. Instrum. Methods Phys. Res. A 531, 18 (2004)CrossRefADSGoogle Scholar
  13. 13.
    S. DelSordo, L. Abbene, E. Caroli, A.M. Mancini, A. Zappettini, P. Ubertini, Sensors 9, 3491 (2009)CrossRefGoogle Scholar
  14. 14.
    L. Abbene, S. DelSordo, Compr. Biomed. Phys. 8, 285 (2014)CrossRefGoogle Scholar
  15. 15.
    A.A. Turturici, L. Abbene, J. Franc, R. Grill, V. Dědič, F. Principato, Nucl. Instrum. Methods Phys. Res. A 795, 58 (2015)CrossRefADSGoogle Scholar
  16. 16.
    S. Takeda, A. Harayama, Y. Ichinohe, H. Odaka, S. Watanabe, T. Takahashi, H. Tajima, K. Genba, D. Matsuura, H. Ikebuchi, Y. Kuroda, T. Tomonaka, Nucl. Instrum. Methods Phys. Res. A 787, 207 (2015)CrossRefADSGoogle Scholar
  17. 17.
    Y. Eisen, Nucl. Instrum. Methods Phys. Res. A 322, 596 (1992)CrossRefADSGoogle Scholar
  18. 18.
    J.H. Greenberg, J. Cryst. Growth 161, 1 (1996)CrossRefADSGoogle Scholar
  19. 19.
    B.S. Moon, J.H. Lee, H. Jung, Thin Solid Films 511/512, 299 (2006)CrossRefADSGoogle Scholar
  20. 20.
    V. Biju, S. Neena, V. Vrinda, S.L. Salini, J. Mater. Sci. 43, 1175 (2008)CrossRefADSGoogle Scholar
  21. 21.
    H.P. Klug, L. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd edn. (John Wiley & Sons, New York, 1974), pp. 618–708, Chap. 9Google Scholar
  22. 22.
    G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953)CrossRefGoogle Scholar
  23. 23.
    G.K. Williamson, R.E. Smallman, Philos. Mag. 1, 34 (1956)CrossRefADSGoogle Scholar
  24. 24.
    M.A. Islam, Q. Huda, M.S. Hossain, M.M. Aliyu, M.R. Karim, K. Sopian, N. Amin, Curr. Appl. Phys. 13, 115 (2013)CrossRefADSGoogle Scholar
  25. 25.
    E. Akbarnejad, M. Ghoranneviss, S. Mohajerzadeh, M.R. Hantehzadeh, E. Asl Soleimani, J. Phys. D: Appl. Phys. 49, 075301 (2016)CrossRefADSGoogle Scholar
  26. 26.
    S. Chandramohan, R. Sathyamoorthy, P. Sudhagar, D. Kanjilal, D. Kabiraj, K. Asokan, Thin Solid Films 516, 5508 (2008)CrossRefADSGoogle Scholar
  27. 27.
    K. Sedeek, E.A. Mahmoud, F.S. Terra, S.M. El Din, J. Phys. D: Appl. Phys. 27, 156 (1994)CrossRefADSGoogle Scholar
  28. 28.
    H. Dang, V. Singh, S. Rajaputra, S. Guduru, J. Chen, B. Nadimpally, Solar Energy Mater. Solar Cells 126, 184 (2014)CrossRefGoogle Scholar
  29. 29.
    S. Chander, M.S. Dhaka, Physica E 76, 52 (2016)CrossRefADSGoogle Scholar
  30. 30.
    K. Punitha, R. Sivakumar, C. Sanjeeviraja, V. Ganesan, Appl. Surf. Sci. 344, 89 (2015)CrossRefADSGoogle Scholar
  31. 31.
    E. Bacaksiz, B.M. Basol, M. Altunbaş, V. Novruzov, E. Yanmaz, S. Nezir, Thin Solid Films 515, 3079 (2007)CrossRefADSGoogle Scholar
  32. 32.
    A.P. Belyaev, V.P. Rubets, M.Yu. Nuzhdin, I.P. Kalinkin, Semiconductors 37, 617 (2003)CrossRefADSGoogle Scholar
  33. 33.
    S. Kumar, S. Kumar, P. Sharma, V. Sharma, S.C. Katyal, J. Appl. Phys. 112, 123512 (2012)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Elaheh Akbarnejad
    • 1
  • Mahmood Ghoranneviss
    • 1
  • Mohammad Reza Hantehzadeh
    • 1
  1. 1.Plasma Physics Research Centre, Science and Research Branch, Islamic Azad UniversityTehranIran

Personalised recommendations