Measurement of changes in impedance of DNA nanowires due to radiation induced structural damage

A novel approach for a DNA-based radiosensitive device
  • Florian Heimbach
  • Alexander Arndt
  • Heidi Nettelbeck
  • Frank Langner
  • Ulrich Giesen
  • Hans Rabus
  • Stefan Sellner
  • Jussi Toppari
  • Boxuan Shen
  • Woon Yong Baek
Regular Article
  • 22 Downloads
Part of the following topical collections:
  1. Topical Issue: Dynamics of Systems at the Nanoscale

Abstract

The ability of DNA to conduct electric current has been the topic of numerous investigations over the past few decades. Those investigations indicate that this ability is dependent on the molecular structure of the DNA. Radiation-induced damages, which lead to an alteration of the molecular structure, should therefore change the electrical impedance of a DNA molecule. In this paper, the damage due to ionising radiation is shown to have a direct effect on the electrical transport properties of DNA. Impedance measurements of DNA samples were carried out by an AC impedance spectrometer before, during and after irradiation. The samples comprised of DNA segments, which were immobilized between gold electrodes with a gap of 12 μm. The impedance of all DNA samples exhibited rising capacitive behaviour with increasing absorbed dose.

Graphical abstract

References

  1. 1.
    K. Kawane, K. Motani, S. Nagata, Cold Spring Harb. Perspect. Biol. 6, a016394 (2014)CrossRefGoogle Scholar
  2. 2.
    J.B. Storer, P.S. Harris, J.E. Furchner, W.H. Langham, Radiat. Res. 6, 188 (1957)CrossRefGoogle Scholar
  3. 3.
    M. Wolter, P.B. Woiczikowski, M. Elstner, T. Kubar, Phys. Rev. B 85, 075101 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    A. Voityuk, N. Roesch, M. Bixon, J. Jortner, J. Phys. Chem. 104, 9740 (2000)CrossRefGoogle Scholar
  5. 5.
    F. Lewis, J. Liu, W. Weigel, W. Rettig, I. Kurnikov, D. Beratan, Proc. Natl. Acad. Sci. USA 99, 12536 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    A. Troisi, G. Orlandi, Chem. Phys. Lett. 344, 509 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    G. Cuniberti, L. Craco, D. Porath, C. Dekker, Phys. Rev. B: Condens. Matter Mater. Phys. 65, 241314 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    S. Tuukkanen, A. Kuzyk, J.J. Toppari, V.P. Hytnen, T. Ihalainen, P. Trm, Appl. Phys. Lett. 87, 183102 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    D.H. Ha, H. Nham, K.H. Yoo, H. mi So, H.Y. Lee, T. Kawai, Chem. Phys. Lett. 355, 405 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    C. Jaidler, Model 7230 DSP Lock-in Amplifier, Istruction Manual, 198004-A-MNL-B (Ametek Advanced Measurement Technology, 2010)Google Scholar
  11. 11.
    S. Kassegne, D. Wibowo, J. Chi, V. Ramesh, A. Narenji, A. Khosla, J. Mokili, IET Nanobiotechnol. 9, 153 (2015)CrossRefGoogle Scholar
  12. 12.
    D.A. Wibowo, DNA molecular wire-based nanoelectronics: new insight and high frequency AC electrical characterization, Master’s thesis (San Diego State University, 2014)Google Scholar
  13. 13.
    Y. Xue, X. Li, H. Li, W. Zhang, Nat. Commun. 5, 4348 (2014)ADSGoogle Scholar
  14. 14.
    J.M. Tour, L.R. Jones, D.L. Pearson, J.J.S. Lamba, T.P. Burgin, G.M. Whitesides, D.L. Allara, A.N. Parikh, S.V. Atre, J. Am. Chem. Soc. 117, 9529 (1995)CrossRefGoogle Scholar
  15. 15.
    J.F. Ziegler, J.P. Biersack, M.D. Ziegler, SRIM – The Stopping and Range of Ions in Matter (Lulu Press Co., Morrisville, NC, USA, 2010), http://www.srim.org
  16. 16.
    K.D. Greif, H.J. Brede, D. Frankenberg, U. Giesen, Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 217, 505 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    T. Kuba, M. Elstner, J. R. Soc. Interface 10 (2013)Google Scholar
  18. 18.
    J.J. Mordecai Bixon, Chem. Phys. 281, 393 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    R. Gutirrez, S. Mandal, G. Cuniberti, Nano Lett. 5, 1093 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    S. Tuukkanen, A. Kuzyk, J. Toppari, H. Hkkinen, V.P. Hynen, E. Niskanen, M. Rinki, P. Trm, Nanotechnology 18, 295204 (2007)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Florian Heimbach
    • 1
  • Alexander Arndt
    • 1
  • Heidi Nettelbeck
    • 1
  • Frank Langner
    • 1
  • Ulrich Giesen
    • 1
  • Hans Rabus
    • 1
  • Stefan Sellner
    • 2
  • Jussi Toppari
    • 3
  • Boxuan Shen
    • 3
  • Woon Yong Baek
    • 1
  1. 1.Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100BraunschweigGermany
  2. 2.Institute of Physical and Chemical ResearchSaitama PrefectureJapan
  3. 3.University of Jyvaskyla, Department of PhysicsJyväskyläFinland

Personalised recommendations