Skip to main content
Log in

Measurement of changes in impedance of DNA nanowires due to radiation induced structural damage

A novel approach for a DNA-based radiosensitive device

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The ability of DNA to conduct electric current has been the topic of numerous investigations over the past few decades. Those investigations indicate that this ability is dependent on the molecular structure of the DNA. Radiation-induced damages, which lead to an alteration of the molecular structure, should therefore change the electrical impedance of a DNA molecule. In this paper, the damage due to ionising radiation is shown to have a direct effect on the electrical transport properties of DNA. Impedance measurements of DNA samples were carried out by an AC impedance spectrometer before, during and after irradiation. The samples comprised of DNA segments, which were immobilized between gold electrodes with a gap of 12 μm. The impedance of all DNA samples exhibited rising capacitive behaviour with increasing absorbed dose.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kawane, K. Motani, S. Nagata, Cold Spring Harb. Perspect. Biol. 6, a016394 (2014)

    Article  Google Scholar 

  2. J.B. Storer, P.S. Harris, J.E. Furchner, W.H. Langham, Radiat. Res. 6, 188 (1957)

    Article  Google Scholar 

  3. M. Wolter, P.B. Woiczikowski, M. Elstner, T. Kubar, Phys. Rev. B 85, 075101 (2012)

    Article  ADS  Google Scholar 

  4. A. Voityuk, N. Roesch, M. Bixon, J. Jortner, J. Phys. Chem. 104, 9740 (2000)

    Article  Google Scholar 

  5. F. Lewis, J. Liu, W. Weigel, W. Rettig, I. Kurnikov, D. Beratan, Proc. Natl. Acad. Sci. USA 99, 12536 (2002)

    Article  ADS  Google Scholar 

  6. A. Troisi, G. Orlandi, Chem. Phys. Lett. 344, 509 (2001)

    Article  ADS  Google Scholar 

  7. G. Cuniberti, L. Craco, D. Porath, C. Dekker, Phys. Rev. B: Condens. Matter Mater. Phys. 65, 241314 (2002)

    Article  ADS  Google Scholar 

  8. S. Tuukkanen, A. Kuzyk, J.J. Toppari, V.P. Hytnen, T. Ihalainen, P. Trm, Appl. Phys. Lett. 87, 183102 (2005)

    Article  ADS  Google Scholar 

  9. D.H. Ha, H. Nham, K.H. Yoo, H. mi So, H.Y. Lee, T. Kawai, Chem. Phys. Lett. 355, 405 (2002)

    Article  ADS  Google Scholar 

  10. C. Jaidler, Model 7230 DSP Lock-in Amplifier, Istruction Manual, 198004-A-MNL-B (Ametek Advanced Measurement Technology, 2010)

  11. S. Kassegne, D. Wibowo, J. Chi, V. Ramesh, A. Narenji, A. Khosla, J. Mokili, IET Nanobiotechnol. 9, 153 (2015)

    Article  Google Scholar 

  12. D.A. Wibowo, DNA molecular wire-based nanoelectronics: new insight and high frequency AC electrical characterization, Master’s thesis (San Diego State University, 2014)

  13. Y. Xue, X. Li, H. Li, W. Zhang, Nat. Commun. 5, 4348 (2014)

    ADS  Google Scholar 

  14. J.M. Tour, L.R. Jones, D.L. Pearson, J.J.S. Lamba, T.P. Burgin, G.M. Whitesides, D.L. Allara, A.N. Parikh, S.V. Atre, J. Am. Chem. Soc. 117, 9529 (1995)

    Article  Google Scholar 

  15. J.F. Ziegler, J.P. Biersack, M.D. Ziegler, SRIM – The Stopping and Range of Ions in Matter (Lulu Press Co., Morrisville, NC, USA, 2010), http://www.srim.org

  16. K.D. Greif, H.J. Brede, D. Frankenberg, U. Giesen, Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 217, 505 (2004)

    Article  ADS  Google Scholar 

  17. T. Kuba, M. Elstner, J. R. Soc. Interface 10 (2013)

  18. J.J. Mordecai Bixon, Chem. Phys. 281, 393 (2002)

    Article  ADS  Google Scholar 

  19. R. Gutirrez, S. Mandal, G. Cuniberti, Nano Lett. 5, 1093 (2005)

    Article  ADS  Google Scholar 

  20. S. Tuukkanen, A. Kuzyk, J. Toppari, H. Hkkinen, V.P. Hynen, E. Niskanen, M. Rinki, P. Trm, Nanotechnology 18, 295204 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Heimbach.

Additional information

Contribution to the Topical Issue “Dynamics of Systems at the Nanoscale”, edited by Andrey Solov’yov and Andrei Korol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heimbach, F., Arndt, A., Nettelbeck, H. et al. Measurement of changes in impedance of DNA nanowires due to radiation induced structural damage. Eur. Phys. J. D 71, 211 (2017). https://doi.org/10.1140/epjd/e2017-70819-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-70819-1

Navigation