Influence of residual ion polarization on the coplanar symmetric (e, 2e) cross sections for calcium and argon

Regular Article
Part of the following topical collections:
  1. Topical Issue: Atomic and Molecular Data and their Applications


Detailed calculations using a modified distorted wave Born approximation (DWBA) are carried out for the triple differential cross section (TDCS) in the coplanar symmetric single ionization of calcium and argon atoms. The effects of residual ion polarization on the TDCS are investigated systematically. Our results show that the residual ion polarization, arising from the interaction between the target ion and the two outgoing electrons in the final state, may lead to a considerable change in the TDCS with a more pronounced effect in the large scattering angle region at intermediate energies. The present attempt significantly improves the agreement between theoretical and experimental results.

Graphical abstract


  1. 1.
    T.R. Kallman, P. Palmeri, Rev. Mod. Phys. 79, 79 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    O. Zatsarinny, Y. Wang, K. Bartschat, J. Phys. B 46, 035202 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Wang, L.G. Jiao, Y.J. Zhou, Phys. Lett. A 376, 2122 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Wang, O. Zatsarinny, K. Bartschat, Phys. Rev. A 89, 062714 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Wang, O. Zatsarinny, K. Bartschat, J.-P. Booth, Phys. Rev. A 87, 022703 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Z.B. Chen, J.L. Zeng, C.Z. Dong, J. Phys. B 48, 045202 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    Z.B. Chen, C.Z. Dong, J. Jiang, Phys. Rev. A 90, 022715 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    X. Zhang, C.T. Whelan, H.R.J. Walters, R.J. Allan, P. Bickert, W. Hink, S. Schonberger, J. Phys. B 25, 4325 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    Z. Chen, D.H. Madison, J. Phys. B 38, 4195 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    K. Bartschat, O. Vorov, Phys. Rev. A 72, 022728 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    M.A. Stevenson, B. Lohmann, Phys. Rev. A 73, 020701(R) (2006)ADSCrossRefGoogle Scholar
  12. 12.
    X.Y. Hu, Y. Zhou, Phys. Lett. A 372, 4809 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    S. Otranto, Phys. Rev. A 79, 012705 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    X. Ren, A. Senftleben, T. Pflüger, A. Dorn, K. Bartschat, J. Ullrich, J. Phys. B 43, 035202 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    L.R. Hargreaves, M.A. Stevenson, B. Lohmann, J. Phys. B 43, 205202 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    P. Zhang, X. Ma, S. Yan, S. Xu, S.F. Zhang, X.L. Zhu, W.T. Feng, H.P. Liu, Phys. Rev. A 86, 012712 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    S. Bell, C.T. Gibson, B. Lohmann, Phys. Rev. A 51, 2623 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    K.L. Nixon, A.J. Murray, Phys. Rev. A 87, 022712 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    T.N. Rescigno, M. Baertschy, W.A. Isaacs, C.W. McCurdy, Science 286, 2474 (1999)CrossRefGoogle Scholar
  20. 20.
    I. Bray, Phys. Rev. Lett. 89, 273201 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    J. Colgan, M.S. Pindzola, F.J. Robicheaux, D.C. Grffin, M. Baertschy, Phys. Rev. A 65, 042721 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    H.P. Saha, J. Phys. B 44, 065202 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    O. Zatsarinny, K. Bartschat, Phys. Rev. Lett. 107, 023203 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    M. Brauner, J.S. Briggs, H. Klar, J. Phys. B 22, 2265 (1989)ADSCrossRefGoogle Scholar
  25. 25.
    R.K. Chauhan, M.K. Srivastava, R. Srivastava, Phys. Rev. A 71, 032708 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Khajuria, P.C. Deshmukh, Phys. Rev. A 78, 024702 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    G. Purohit, V. Patidar, K.K. Sud, Phys. Lett. A. 374, 2654 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    A.J. Murray, D. Cvejanovic, J. Phys. B 36, 4875 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    S. Rioual, B. Rouvellou, A. Pochat, J. Rasch, H.R.J. Walters, C.T. Whelan, R.J. Allan, J. Phys. B 30, L475 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    G. Purohit, P. Singh, V. Patidar, Y. Azuma, K.K. Sud, Phys. Rev. A 85, 022714 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    F.A. Gianturco, S. Scialla, J. Phys. B 20, 3171 (1987)ADSCrossRefGoogle Scholar
  32. 32.
    S.J. Ward, J.H. Macek, Phys. Rev. A 49, 1049 (1994)ADSCrossRefGoogle Scholar
  33. 33.
    A. Dalgarno, J.T. Lewis, Proc. R. Soc. Lond. A 233, 70 (1955)ADSCrossRefGoogle Scholar
  34. 34.
    F.A. Gianturco, K.T. Tang, J.P. Toennies, D. De Fazio, J.A. Rodrigucz-Ruiz, Z. Phys. D 33, 27 (1995)ADSCrossRefGoogle Scholar
  35. 35.
    U. Hitawala, G. Purohit, K.K. Sud, J. Phys. B 41, 035205 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    K.L. Nixon, A.J. Murray, Phys. Rev. A 87, 022712 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    S. Amami, Z.N. Ozer, M. Dogan, M. Yavuz, O. Varol, D. Madison, J. Phys. B 49, 185202 (2016)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Data Center for High Energy Density Physics, Institute of Applied Physics and Computational MathematicsBeijingP.R. China
  2. 2.College of Science, National University of Defense TechnologyHunanP.R. China
  3. 3.Department of PhysicsHarbin Institute of TechnologyHarbinP.R. China
  4. 4.Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Hebei UniversityBaodingP.R. China

Personalised recommendations