Photon emission by bremsstrahlung and nonlinear Compton scattering in the interaction of ultraintense laser with plasmas

  • Feng Wan
  • Chong Lv
  • Moran Jia
  • Haibo Sang
  • Baisong Xie
Regular Article
Part of the following topical collections:
  1. Topical Issue: Relativistic Laser Plasma Interactions

Abstract

A Monte Carlo algorithm describing the bremsstrahlung of energetic electrons is implemented into a particle-in-cell code, and used for studies of laser plasma interactions. The simulations are performed for laser pulses of different intensities interacting with low-Z or high-Z targets. The relative strength of photon emission from bremsstrahlung and nonlinear Compton scattering is compared. The nonlinear Compton scattering dominates at ultra-high intensities (I ≥ 1022 W / cm2) and thin high Z targets, while the bremsstrahlung emission makes a comparable contribution at lower laser intensities.

Graphical abstract

References

  1. 1.
    M. Marklund, P.K. Shukla, Rev. Mod. Phys. 78, 591 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    A. Di Piazza, C. Müller, K.Z. Hatsagortsyan, C.H. Keitel, Rev. Mod. Phys. 84, 1177 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    A.M. Fedotov, N.B. Narozhny, G. Mourou, G. Korn, Phys. Rev. Lett. 105, 080402 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    T. Grismayer, M. Vranic, J.L. Martins, R.A. Fonseca, L.O. Silva, Phys. Plasmas 23, 056706 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    P. Zhang, C.P. Ridgers, A.G.R. Thomas, New J. Phys. 17, 043051 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    L.L. Ji, A. Pukhov, I.Y. Kostyukov, B.F. Shen, K. Akli, Phys. Rev. Lett. 112, 145003 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    D.L. Burke, R.C. Field, G. Horton-Smith, J.E. Spencer, D. Walz, S.C. Berridge, W.M. Bugg, K. Shmakov, A.W. Weidemann, C. Bula, K.T. McDonald, E.J. Prebys, C. Bamber, S.J. Boege, T. Koffas, T. Kotseroglou, A.C. Melissinos, D.D. Meyerhofer, D.A. Reis, W. Ragg, Phys. Rev. Lett. 79, 1626 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    C. Bamber, S.J. Boege, T. Koffas, T. Kotseroglou, A.C. Melissinos, D.D. Meyerhofer, D.A. Reis, W. Ragg, C. Bula, K.T. McDonald, E.J. Prebys, D.L. Burke, R.C. Field, G. Horton-Smith, J.E. Spencer, D. Walz, S.C. Berridge, W.M. Bugg, K. Shmakov, A.W. Weidemann, Phys. Rev. D 60, 092004 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    A.R. Bell, J.G. Kirk, Phys. Rev. Lett. 101, 200403 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    C.P. Ridgers, C.S. Brady, R. Duclous, J.G. Kirk, K. Bennett, T.D. Arber, A.P.L. Robinson, A.R. Bell, Phys. Rev. Lett. 108, 165006 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    C.P. Ridgers, C.S. Brady, R. Duclous, J.G. Kirk, K. Bennett, T.D. Arber, A.R. Bell, Phys. Plasmas 20, 056701 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    W. Luo, Y.B. Zhu, H.B. Zhuo, Y.Y. Ma, Y.M. Song, Z.C. Zhu, X.D. Wang, X.H. Li, I.C.E. Turcu, M. Chen, Phys. Plasmas 22, 063112 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    H.X. Chang, B. Qiao, Z. Xu, X.R. Xu, C.T. Zhou, X.Q. Yan, S.Z. Wu, M. Borghesi, M. Zepf, X.T. He, Phys. Rev. E 92, 053107 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    X.L. Zhu, Y. Yin, T.P. Yu, F.Q. Shao, Z.Y. Ge, W.Q. Wang, J.J. Liu, New J. Phys. 17, 053039 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    J.G. Kirk, A.R. Bell, I. Arka, Plasma Phys. Control. Fusion 51, 085008 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    C.S. Brady, C.P. Ridgers, T.D. Arber, A.R. Bell, J.G. Kirk, Phys. Rev. Lett. 109, 245006 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    J.G. Kirk, A.R. Bell, C.P. Ridgers, Plasma Phys. Control. Fusion 55, 095016 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    T.G. Blackburn, C.P. Ridgers, J.G. Kirk, A.R. Bell, Phys. Rev. Lett. 112, 015001 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    C.P. Ridgers, J.G. Kirk, R. Duclous, T.G. Blackburn, C.S. Brady, K. Bennett, T.D. Arber, A.R. Bell, J. Comput. Phys. 260, 273 (2014)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    T.D. Arber, K. Bennett, C.S. Brady, A. Lawrence-Douglas, M.G. Ramsay, N.J. Sircombe, P. Gillies, R.G. Evans, H. Schmitz, A.R. Bell, C.P. Ridgers, Plasma Phys. Control. Fusion 57, 113001 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    L.L. Ji, A. Pukhov, E.N. Nerush, I.Y. Kostyukov, B.F. Shen, K.U. Akli, Phys. Plasmas 21, 023109 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    G. Lehmann, K.H. Spatschek, Phys. Rev. E 85, 056412 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    D. Seipt, B. Kämpfer, Phys. Rev. A 83, 022101 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    G. Sarri, J. Plasma Phys. 81, 415810202 (2014)CrossRefGoogle Scholar
  25. 25.
    G. Sarri, K. Poder, J.M. Cole, W. Schumaker, A. Di Piazza, B. Reville, T. Dzelzainis, D. Doria, L.A. Gizzi, G. Grittani, S. Kar, C.H. Keitel, K. Krushelnick, S. Kuschel, S.P.D. Mangles, Z. Najmudin, N. Shukla, L.O. Silva, D. Symes, A.G.R. Thomas, M. Vargas, J. Vieira, M. Zepf, Nat. Commun. 6, 6747 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    L. Guo, J. Zheng, B. Zhao, D. Li, Plasma Phys. Control. Fusion 50, 125004 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    E. Liang, T. Clarke, A. Henderson, W. Fu, W. Lo, D. Taylor, P. Chaguine, S. Zhou, Y. Hua, X. Cen, X. Wang, J. Kao, H. Hasson, G. Dyer, K. Serratto, N. Riley, M. Donovan, T. Ditmire, Sci. Rep. 5, 13968 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    O.J. Pike, F. Mackenroth, E.G. Hill, S.J. Rose, Nat. Photon. 8, 434 (2014)ADSGoogle Scholar
  29. 29.
    C. Bula, K.T. McDonald, E.J. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A.C. Melissinos, D.D. Meyerhofer, W. Ragg, D.L. Burke, R.C. Field, G. Horton-Smith, A.C. Odian, J.E. Spencer, D. Walz, S.C. Berridge, W.M. Bugg, K. Shmakov, A.W. Weidemann, Phys. Rev. Lett. 76, 3116 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    A.A. Sokolov, I.M. Ternov, Synchrotron Radiation (Akademie-Verlag, Berlin, 1968)Google Scholar
  31. 31.
    Y.S. Tsai, Rev. Mod. Phys. 46, 815 (1974)ADSCrossRefGoogle Scholar
  32. 32.
    S. Jiang, A.G. Krygier, D.W. Schumacher, K.U. Akli, R.R. Freeman, Eur. Phys. J. D 68, 283 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    A.L. Meadowcroft, R.D. Edwards, IEEE Trans. Plasma Sci. 40, 1992 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    V. Hanus, L. Drska, E. d’Humieres, V. Tikhonchuk, Laser Part. Beams 32, 171 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    F. Salvat, J.M. Fernández-Varea, J. Sempau, PENELOPE-2008: A Code System for Monte Carlo Simulation of Electron, Photon Transport (Nuclear Energy Agency, Barcelona, 2009)Google Scholar
  37. 37.
    S.M. Seltzer, M.J. Berger, At. Data Nucl. Data Tables 35, 345 (1986)ADSCrossRefGoogle Scholar
  38. 38.
    L. Kim, R.H. Pratt, S.M. Seltzer, M.J. Berger, Phys. Rev. A 33, 3002 (1986)ADSCrossRefGoogle Scholar
  39. 39.
    E.N. Nerush, I. Yu. Kostyukov, L. Ji, A. Pukhov, Phys. Plasmas 21, 013109 (2014)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Feng Wan
    • 1
  • Chong Lv
    • 1
  • Moran Jia
    • 1
  • Haibo Sang
    • 1
  • Baisong Xie
    • 1
    • 2
  1. 1.College of Nuclear Science and Technology, Beijing Normal UniversityBeijingP.R. China
  2. 2.Beijing Radiation CenterBeijingP.R. China

Personalised recommendations