Light transmission asymmetry and optical diode

  • Pavel N. Melentiev
  • Anton E. Afanasiev
  • Alexey S. Kalmykov
  • Victor I. Balykin
Regular Article
Part of the following topical collections:
  1. Topical Issue: Dynamics of Systems at the Nanoscale

Abstract

We have suggested and realized a giant asymmetry of the transmission of light propagating through a linear nonmagnetic optical system that consists of a nanohole in metal film deposited on the surface of a one-dimensional photonic crystal. The asymmetry of the light transmission is caused by two factors: (i) practical impossibility to reverse the wavefront of light passing through a nanohole whose diameter is much smaller than the wavelength of light; and (ii) increase of photonic crystal transmission at photonic bandgap wavelengths due to strong modification of k-vector of incident light caused by diffraction on a nanohole (optical “clearance” of the photonic crystal). We show that in such optical element it is possible to realize optical diode whose reverse transmission can be suppressed by a factor of more than 30 000.

Graphical abstract

References

  1. 1.
    L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2012)Google Scholar
  2. 2.
    J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Nat. Mater. 9, 193 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    J.W. Chon, K. Iniewski, Integrated Plasmonic Nano-Devices (CRC Press, 2013)Google Scholar
  4. 4.
    V. Klimov, Nanoplasmonics (CRC Press, 2014)Google Scholar
  5. 5.
    Y.A. Vlasov, Proc. SPIE 9367, Silicon Photonics X pp. 93671X–93671X (2015)Google Scholar
  6. 6.
    P. Melentiev, A. Afanasiev, A. Tausenev, A. Konyaschenko, V. Klimov, V. Balykin, Laser Phys. Lett. 11, 105301 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    P.N. Melentiev, A.E. Afanasiev, A.A. Kuzin, A.S. Baturin, V.I. Balykin, Opt. Lett. 38, 2274 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    P.N. Melentiev, A.A. Kuzin, A.S. Gritchenko, A.S. Kalmykov, V.I. Balykin, Opt. Commun. 382, 509 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    N.A. Estep, D.L. Sounas, J. Soric, A. Alù, Nat. Phys. 10, 923 (2014)CrossRefGoogle Scholar
  10. 10.
    D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J.D. Joannopoulos et al., Nat. Photon. 7, 579 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    J.D. Jackson, Classical Electrodynamics (Wiley, 1999)Google Scholar
  12. 12.
    H. Von Helmholtz, Handbuch der physiologischen Optik (Voss, 1867), Vol. 9Google Scholar
  13. 13.
    H.A. Lorentz, Vers. Konig. Akad. Wetensch. 4, 176 (1896)Google Scholar
  14. 14.
    L.D. Landau, E. Lifshitz, Electrodynamics Continuous Media (Oxford, 1960)Google Scholar
  15. 15.
    J.Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V.I. Belotelov, B. Stritzker, H. Giessen, Nat. Commun. 4, 1599 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    A.R. Davoyan, N. Engheta, Phys. Rev. Lett. 111, 047401 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    A.B. Khanikaev, S.H. Mousavi, G. Shvets, Y.S. Kivshar, Phys. Rev. Lett. 105, 126804 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    V.K. Valev, J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens et al., Adv. Mater. 26, 4074 (2014)CrossRefGoogle Scholar
  19. 19.
    Y. Yu, Y. Chen, H. Hu, W. Xue, K. Yvind, J. Mork, Laser Photon. Rev. 9, 241 (2015)CrossRefGoogle Scholar
  20. 20.
    L.D. Tzuang, K. Fang, P. Nussenzveig, S. Fan, M. Lipson, Nat. Photon. 8, 701 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    A. Shaltout, A. Kildishev, V. Shalaev, Opt. Mater. Express 5, 2459 (2015)CrossRefGoogle Scholar
  22. 22.
    V.V. Klimov, I.V. Treshin, A.S. Shalin, P.N. Melentiev, A.A. Kuzin, A.E. Afanasiev, V.I. Balykin, Phys. Rev. A 92, 063842 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    T. Xu, H.J. Lezec, Nat. Commun. 5, 1 (2014)ADSGoogle Scholar
  24. 24.
    H. Kurt, D. Yilmaz, A. Akosman, E. Ozbay, Opt. Express 20, 20635 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    L.N. Hadley, D.M. Dennison, JOSA 37, 451 (1947)ADSCrossRefGoogle Scholar
  26. 26.
    A.F. Koenderink, L.V. Willem, JOSA B 22, 1075 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    T.V. Konstantinova, P. Melentiev, A. Afanasiev, A.A. Kuzin, P. Starikov, A.S. Baturin, A.V. Tausenev, A.V. Konyashchenko, V.I. Balykin, Quantum Electron. 43, 379 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    W. Moerner, Rev. Mod. Phys. 87, 1183 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    H. Bethe, Phys. Rev. 66, 163 (1944)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    D. Permyakov, I.S. Mukhin, I. Shishkin, A. Samusev, P.A. Belov, Y.S. Kivshar, J. Exp. Theor. Phys. Lett. 99, 622 (2014)CrossRefGoogle Scholar
  31. 31.
    P. Melentiev, A. Zablotskiy, D. Lapshin, E. Sheshin, A. Baturin, V. Balykin, Nanotechnology 20, 235301 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    L. Wang, A.S. Shorokhov, P.N. Melentiev, S. Kruk, M. Decker, C. Helgert, F. Setzpfandt, A.A. Fedyanin, Y.S. Kivshar, D.N. Neshev, ACS Photonics (2016)Google Scholar
  33. 33.
    P. Melentiev, A. Afanasiev, A. Kuzin, A. Zablotskiy, A. Baturin, V. Balykin, Opt. Express 19, 22743 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    I.V. Treshin, V.V. Klimov, P.N. Melentiev, V.I. Balykin, Phys. Rev. A 88, 023832 (2013)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Pavel N. Melentiev
    • 1
  • Anton E. Afanasiev
    • 1
  • Alexey S. Kalmykov
    • 1
    • 2
  • Victor I. Balykin
    • 1
  1. 1.Institute for Spectroscopy Russian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyRussia

Personalised recommendations