Transient negative ion spectrum of the cytosine-guanine pair

  • Fernanda Brandalise Nunes
  • Márcio Teixeira do Nascimento Varella
  • Diego Farago Pastega
  • Thiago Correa Freitas
  • Marco Aurélio Pinheiro Lima
  • Márcio Henrique Franco Bettega
  • Sergio d’Almeida Sanchez
Regular Article


We employed elastic scattering calculations, performed in the static exchange approximation, to investigate the π transient anion states of cytosine, guanine and the cytosine-guanine pair. Our results for the isolated monomers, also obtained in the static-exchange plus polarization approximation, are in good agreement with the available calculations and electron transmission data. Virtual orbital analysis for the lower-lying π anion states, with pure shape resonance character, indicates that electron attachment to the cytosine-guanine pair gives rise to resonances located on either monomer (the orbitals do not delocalize over the pair). The π shape resonances of the pair localized on the cytosine unit have lower energies in comparison with those of the isolated base, with the opposite trend for the guanine unit. The underlying mechanism would be the net positive charge transfer to the cytosine unit, as the guanine monomer acts as a proton donor in two out of the three hydrogen bonds formed in the pair. Even though the calculations were performed in the static-exchange approximation (due to the size of the system), the conclusions drawn were also corroborated by empirical estimates of the vertical attachment energies. The results for the cytosine-guanine pair are compared to those previously obtained for the formic acid-formamide complex, having two hydrogen bonds with opposite donor/acceptor characters and negligible charge transfer.

Graphical abstract


Atomic and Molecular Collisions 


  1. 1.
    B. Boudaïffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Science 287, 1658 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    International Commission on Radiation Units and Measurements, ICRU Report 31 (ICRU, Washington, DC, 1979)Google Scholar
  3. 3.
    T. Jahnke, H. Sann, T. Havermeier, K. Kreidi, C. Stuck, M. Meckel, M. Schöffler, N. Neumann, R. Wallauer, S. Voss, A. Czasch, O. Jagutzki, A. Malakzadeh, F. Afaneh, Th. Weber, H. Schmidt-Böcking, R. Dörner, Nat. Phys. 139, 6 (2010)Google Scholar
  4. 4.
    I. Baccarelli, I. Bald, F.A. Gianturco, E. Illenberger, J. Kopyra, Phys. Rep. 508, 1 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    P.D. Burrow, A. Modelli, N.S. Chiu, K.D. Jordan, Chem. Phys. Lett. 82, 270 (1981)ADSCrossRefGoogle Scholar
  6. 6.
    R. Barrios, P. Skurski, J. Simons, J. Phys. Chem. B 106, 7991 (2002)CrossRefGoogle Scholar
  7. 7.
    J. Berdys, I. Anusiewicz, P. Skurski, J. Simons, J. Phys. Chem. A 108, 2999 (2004)CrossRefGoogle Scholar
  8. 8.
    J. Berdys, P. Skurski, J. Simons, J. Phys. Chem. B 108, 5008 (2004)CrossRefGoogle Scholar
  9. 9.
    I. Anusiewicz, J. Berdys, M. Sobczyk, P. Skurski, J. Simons, J. Phys. Chem. A 108, 11381 (2004)CrossRefGoogle Scholar
  10. 10.
    C. Winstead, V. McKoy, Rad. Phys. Chem. 77, 1258 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    S. Caprasecca, J.D. Gorfinkel, D. Bouchiha, L. Caron, J. Phys. B 42, 095205 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    I.I. Fabrikant, S. Caprasecca, G.A. Gallup, J.D. Gorfinkel, J. Chem. Phys. 136, 184301 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    M. Smyth, J. Kohanoff, I.I. Fabrikant, J. Chem. Phys. 140, 184313 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    M. Neustetter, J. Aysina, F.F. da Silva, S. Denifl, Angew. Chem. Int. Ed. 54, 9124 (2015)CrossRefGoogle Scholar
  15. 15.
    T.C. Freitas, M.A.P. Lima, S. Canuto, M.H.F. Bettega, Phys. Rev. A 80, 062710 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    T.C. Freitas, S. d’A. Sanchez, M.T. do N. Varella, M.H.F. Bettega, Phys. Rev. A 84, 062714 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    T.C. Freitas, K. Coutinho, M.T. do N. Varella, M.A.P. Lima, S. Canuto, M.H.F. Bettega, J. Chem. Phys. 138, 174307 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    L.M. Cornetta, K. Coutinho, S. Canuto, M.T. do N. Varella, Eur. Phys. J. D 70, 176 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    C. Winstead, V. McKoy, S. d’A Sanchez, J. Chem. Phys. 127, 085105 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    H. Estrada, L.S. Cederbaum, W. Domcke, J. Chem. Phys. 84, 152 (1986)ADSCrossRefGoogle Scholar
  21. 21.
    S. Feuerbacher, T. Sommerfeld, L.S. Cederbaum, J. Chem. Phys. 120, 3201 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    C. Winstead, V. McKoy, J. Chem. Phys. 125, 244302 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    A. Dora, L. Bryjko, T. van Mourik, J. Tennyson, J. Phys. B: At. Mol. Opt. Phys. 45, 175203 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    A. Dora, L. Bryjko, T. van Mourik, J. Tennyson, J. Chem. Phys. 136, 024324 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    K. Aflatooni, G.A. Gallup, P.D. Burrow, J. Phys. Chem. A 102, 6205 (1998)CrossRefGoogle Scholar
  26. 26.
    J.S. dos Santos, R.F. da Costa, M.T. do N. Varella, J. Chem. Phys. 136, 084307 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    K. Takatsuka, V. McKoy, Phys. Rev. A 24, 2473 (1981)ADSCrossRefGoogle Scholar
  28. 28.
    K. Takatsuka, V. McKoy, Phys. Rev. A 30, 1734 (1984)ADSCrossRefGoogle Scholar
  29. 29.
    M.A.P. Lima, L.M. Brescansin, A.J.R. da Silva, C. Winstead, V. McKoy, Phys. Rev. A 41, 327 (1990)ADSCrossRefGoogle Scholar
  30. 30.
    M.H.F. Bettega, L.G. Ferreira, M.A.P. Lima, Phys. Rev. A 47, 1111 (1993)ADSCrossRefGoogle Scholar
  31. 31.
    G.B. Bachelet, D.R. Hamann, M. Schlüter, Phys. Rev. B 26, 4199 (1982)ADSCrossRefGoogle Scholar
  32. 32.
    R.F. da Costa, M.T do N. Varella, M.H.F. Bettega, M.A.P. Lima, Eur. Phys. J. D 69, 159 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, J. Comput. Chem. 14, 1347 (1993)CrossRefGoogle Scholar
  34. 34.
    M.H.F. Bettega, A.P.P. Natalense, M.A.P. Lima, L.G. Ferreira, Int. J. Quantum Chem. 60, 821 (1996)CrossRefGoogle Scholar
  35. 35.
    T.H. Dunning Jr, J. Chem. Phys. 53, 2823 (1970)ADSCrossRefGoogle Scholar
  36. 36.
    F. Kossoski, M.H.F. Bettega, J. Chem. Phys. 138, 234311 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    C. Winstead, V. McKoy, Phys. Rev. Lett. 98, 113201 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    S.W. Staley, T.J. Strnad, J. Phys. Chem. 98, 116 (1994)CrossRefGoogle Scholar
  39. 39.
    J. Grunenberg, J. Am. Chem. Soc. 126, 163101 (2004)CrossRefGoogle Scholar
  40. 40.
    E.M. de Oliveira, T.C. Freitas, K. Coutinho, M.T. do N. Varella, S. Canuto, M.A.P. Lima, M.H.F. Bettega, J. Chem. Phys. 141, 051105 (2014)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Fernanda Brandalise Nunes
    • 1
  • Márcio Teixeira do Nascimento Varella
    • 2
  • Diego Farago Pastega
    • 1
  • Thiago Correa Freitas
    • 3
  • Marco Aurélio Pinheiro Lima
    • 4
  • Márcio Henrique Franco Bettega
    • 1
  • Sergio d’Almeida Sanchez
    • 1
  1. 1.Departamento de Física, Universidade Federal do ParanáCuritibaBrazil
  2. 2.Instituto de Física, Universidade de São PauloSão PauloBrazil
  3. 3.Tecnologia em Luteria, Universidade Federal do ParanáCuritibaBrazil
  4. 4.Instituto de Física Gleb WataghinCampinasBrazil

Personalised recommendations