Skip to main content
Log in

Quantum control of dressed state population for four-level ladder Li2 molecules in femtosecond laser fields

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Using the time-dependent wave packet method, Aulter-Townes splitting in the photoelectron spectra of four-level ladder Li2 molecules is theoretically investigated by two pump and one probe femtosecond laser pulses. Structure of the triple splitting is presented to analyze the information about a selective population of dressed states. It is found that regulating the intensity of laser pulse can control Rabi oscillation and thus tailor the splitting of three peaks. The population and energy of dressed states can be manipulated by changing the wavelength of the second pulse which can be interpreting using doubly dressed states. By adjusting the delay time between pump and probe pulse, one can control the population of the dressed states.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Rice, M. Zhao, Optical control of molecular dynamics (Wiley, New York, 2000)

  2. D. Goswami, Phys. Rep. 374, 385 (2003)

    Article  ADS  Google Scholar 

  3. E.A. Volkova, A.M. Popov, O.V. Tikhonova, J. Exp. Theor. Phys. 86, 328 (1998)

    Article  ADS  Google Scholar 

  4. T. Baumert, G. Gerber, Phys. Scr. 1997, 53 (1997)

    Article  Google Scholar 

  5. M. Wollenhaupt, V. Engel, T. Baumert, Annu. Rev. Phys. Chem. 56, 25 (2005)

    Article  ADS  Google Scholar 

  6. H. Stapelfeldt, Eur. Phys. J. D 26, 15 (2003)

    Article  ADS  Google Scholar 

  7. H.P. Dang, S. Wang, W.S. Zhan et al., Chem. Phys. 461, 81 (2015)

    Article  ADS  Google Scholar 

  8. M. Machholm, N.E. Henriksen, Phys. Rev. Lett. 87, 193001 (2001)

    Article  ADS  Google Scholar 

  9. I.F. Barna, J.M. Rost, Eur. Phys. J. D 27, 287 (2003)

    Article  ADS  Google Scholar 

  10. J. Wu, H. Zeng, C. Guo, Phys. Rev. A 75, 043402 (2007)

    Article  ADS  Google Scholar 

  11. D.S. Guo, J.T. Zhang, Z.R. Sun et al., Front. Phys. 9, 69 (2014)

    Article  Google Scholar 

  12. K.L. Han, G.Z. He, J. Photochem. Photobiol. C 8, 55 (2007)

    Article  Google Scholar 

  13. H.X. He, R.F. Lu, P.Y. Zhang et al., J. Chem. Phys. 136, 024311 (2012)

    Article  ADS  Google Scholar 

  14. K. Bergmann, N.V. Vitanov, B.W. Shore, J. Chem. Phys. 142, 170901 (2015)

    Article  ADS  Google Scholar 

  15. E.E. Aubanel, A.D. Bandrauk, J. Phys. Chem. 97, 12620 (1993)

    Article  Google Scholar 

  16. L.J. Frasinski, J.H. Posthumus, J. Plumridge et al., Phys. Rev. Lett. 83, 3625 (1999)

    Article  ADS  Google Scholar 

  17. Q.T. Meng, G.H. Yang, K.L. Han, Int. J. Quantum Chem. 95, 30 (2003)

    Article  Google Scholar 

  18. S.H. Autler, C.H. Townes, Phys. Rev. 100, 703 (1955)

    Article  ADS  Google Scholar 

  19. A.D. Greentree, C. Wei, N.B. Manson, Phys. Rev. A 59, 4083 (1999)

    Article  ADS  Google Scholar 

  20. M.J. Piotrowicz, C. MacCormick, A. Kowalczyk et al., New J. Phys. 13, 093012 (2011)

    Article  ADS  Google Scholar 

  21. Z. Sun, N. Lou, Phys. Rev. Lett. 91, 023002 (2003)

    Article  ADS  Google Scholar 

  22. H.B. Yao, Y.J. Zheng, Chin. Phys. B 21, 023302 (2012)

    Article  ADS  Google Scholar 

  23. C. Wei, D. Suter, A.S.M. Windsor et al., Phys. Rev. A 58, 2310 (1998)

    Article  ADS  Google Scholar 

  24. W.H. Hu, K.J. Yuan, Y.C. Han et al., Chin. Phys. Lett. 24, 1556 (2007)

    Article  ADS  Google Scholar 

  25. W. Guo, X. Lu, X. Wang et al., EPL 108, 53002 (2014)

    Article  ADS  Google Scholar 

  26. H.B. Yao, Y.J. Zheng, Phys. Chem. Chem. Phys. 13, 8900 (2011)

    Article  Google Scholar 

  27. W. Guo, X. Lu, X. Wang et al., Phys. Chem. Chem. Phys. 16, 20755 (2014)

    Article  Google Scholar 

  28. I. Schmidt-Mink, W. Müller, W. Meyer, Chem. Phys. 92, 263 (1985)

    Article  ADS  Google Scholar 

  29. C. Meier, V. Engel, Phys. Rev. Lett. 73, 3207 (1994)

    Article  ADS  Google Scholar 

  30. C. Meier, V. Engel, J. Chem. Phys. 101, 2673 (1994)

    Article  ADS  Google Scholar 

  31. P. Jasik, J.E. Sienkiewicz, At. Data Nucl. Data Tables 99, 115 (2013)

    Article  ADS  Google Scholar 

  32. C.C. Marston, G.G. Balint-Kurti, J. Chem. Phys. 91, 3571 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  33. M.D. Feit, J.A. Fleck Jr., J. Chem. Phys. 78, 301 (1983)

    Article  ADS  Google Scholar 

  34. D. Kosloff, R. Kosloff, J. Comput. Phys. 52, 35 (1983)

    Article  ADS  Google Scholar 

  35. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg et al., Atom-photon interactions: basic processes, applications (Wiley, New York, 1992)

  36. A. Paloviita, K.A. Suominen, Phys. Rev. A 55, 3007 (1997)

    Article  ADS  Google Scholar 

  37. M. Yan, E.G. Rickey, Y. Zhu, Phys. Rev. A 64, 013412 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Shen Zhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, D., Wang, S., Zhan, WS. et al. Quantum control of dressed state population for four-level ladder Li2 molecules in femtosecond laser fields. Eur. Phys. J. D 71, 220 (2017). https://doi.org/10.1140/epjd/e2017-70784-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-70784-7

Keywords

Navigation