Resonance enhanced electron impact excitation of Cu-like gadolinium

Regular Article
  • 26 Downloads
Part of the following topical collections:
  1. Topical Issue: Atomic and Molecular Data and their Applications

Abstract

Employing the independent processes and isolated resonances approximation using distorted-waves (IPIRDW), we perform a large calculation and a detail investigation on resonance enhanced electron impact excitation (EIE) among the 27 singly excited levels from n ≤ 6 configurations of Cu-like gadolinium (Gd, Z = 64). We take into account the RE contributions from both the relevant Zn-like doubly excited series [Ne]3l18nln′′l′′ with n′ = 4–7, and the series [Ne]3l174l4ln′′l′′. Results show that the RE contributions are significant and enhance effective collision strengths (Υ) of certain excitations by even up to an order of magnitude at low temperature (105.8 K), and still important at relative high temperature (106.8 K), where the fraction abundance of Gd XXXVI is expected at peak. We expect present resonance enhanced EIE results among the 27 levels, which is the first results with the RE contributions from n = 3 → 4 core excitation for Cu-like isoelectronic sequence, are more accurate due to our consideration of RE contributions for this ion for the first time.

Graphical abstract

Supplementary material

References

  1. 1.
    H. Bergstrom, E. Biemont, H. Lundberg, A. Persson, Astron. Astrophys. 192, 335 (1988), provided by the SAO/NASA Astrophysics Data SystemADSGoogle Scholar
  2. 2.
    E. Anders, N. Grevesse, Geochim. Cosmochim. Acta 53, 197 (1989)ADSCrossRefGoogle Scholar
  3. 3.
    M.R. Hartoog, C.R. Cowley, A.P. Cowley, Astrophys. J. 182, 847 (1973)ADSCrossRefGoogle Scholar
  4. 4.
    S. Grudzinska, Excitation of some La II, Gd II and V I lines by the fluorescence mechanism in the spectra of the long-period variable o Ceti, in Cool Stars with Excesses of Heavy Elements, Proceedings of the Strasbourg Observatory Colloquium, Universite de Strasbourg I, France, July 3–6, 1984, Astrophysics and Space Science Library, Vol. 114, edited by M. Jaschek, P.C. Keenan (Reidel Publishing Co., Dordrecht, 1985), p. 267Google Scholar
  5. 5.
    D.L. Lambert, The chemical composition of cool stars: I – The barium stars, in Cool Stars with Excesses of Heavy Elements, Astrophysics and Space Science Library, Vol. 114, edited by M. Jaschek, P.C. Keenan (1985), pp. 191–221Google Scholar
  6. 6.
    A. Magazzu, C.R. Cowley, Astrophys. J. 308, 254 (1986)ADSCrossRefGoogle Scholar
  7. 7.
    S.J. Adelman, Mon. Not. R. Astron. Soc. 239, 487 (1989)ADSCrossRefGoogle Scholar
  8. 8.
    C. Sneden, A. McWilliam, G.W. Preston, J.J. Cowan, D.L. Burris, B.J. Armosky, Astrophys. J. 467, 819 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    J. Yan, P. Li, C.L. Liu, Y.B. Qiu, Q.Y. Fang, Chin. Phys. 10, 1124 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    J. Reader, G. Luther, Phys. Scr. 24, 732 (1981)ADSCrossRefGoogle Scholar
  11. 11.
    J. Reader, G. Luther, Phys. Rev. Lett. 45, 609 (1980)ADSCrossRefGoogle Scholar
  12. 12.
    G.A. Doschek, U. Feldman, C.M. Brown, J.F. Seely, J. Ekberg, W.E. Behring, M.C. Richardson, J. Opt. Soc. Am. B 5, 243 (1988)ADSCrossRefGoogle Scholar
  13. 13.
    J.F. Seely, U. Feldman, A.W. Wouters, J.L. Schwob, S. Suckewer, Phys. Rev. A 40, 5020 (1989)ADSCrossRefGoogle Scholar
  14. 14.
    C. Suzuki, F. Koike, I. Murakami, N. Tamura, S. Sudo, J. Phys. B 45, 135002 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    D. Kilbane, G. O’Sullivan, J.D. Gillaspy, Y. Ralchenko, J. Reader, Phys. Rev. A 86, 042503 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    H.L. Zhang, D.H. Sampson, C.J. Fontes, At. Data Nucl. Data Tables 44, 273 (1990)ADSCrossRefGoogle Scholar
  17. 17.
    C.P. Ballance, D.C. Griffin, J. Phys. B 40, 247 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    V. Jonauskas, R. Kisielius, S. Masys, A. Kyniene, Lith. J. Phys. 53, 144 (2013)CrossRefGoogle Scholar
  19. 19.
    C. Chen, K. Wang, M. Huang, Y.S. Wang, Y.M. Zou, J. Quant. Spectrosc. Radiat. Transf. 111, 843 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    S. Li, J. Yan, C.Y. Li, R. Si, X.L. Guo, M. Huang, C.Y. Chen, Y.M. Zou, Astron. Astrophys. 583, A82 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    T.M. Shen, C.Y. Chen, Y.S. Wang, Y.M. Zou, Eur. Phys. J. D 53, 179 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    U. Feldman, G.A. Doschek, J.F. Seely, J. Appl. Phys. 68, 3947 (1990)ADSCrossRefGoogle Scholar
  23. 23.
    P. Mandelbaum, E. Behar, J.F. Seely, U. Feldman, C.M. Brown, B.A. Hammel, C.A. Back, R.W. Lee, D.R. Kania, A. Barshalom, Phys. Rev. E 49, 5652 (1994)ADSCrossRefGoogle Scholar
  24. 24.
    M.F. Gu, Astrophys. J. 582, 1241 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    M.F. Gu, Phys. Rev. A 70, 062704 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    M.F. Gu, Can. J. Phys. 86, 675 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    T.M. Shen, C.Y. Chen, Y.S. Wang, Y.M. Zou, M.F. Gu, Phys. Rev. A 76, 022703 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Hahn, Adv. At. Mol. Phys. 21, 123 (1985)ADSCrossRefGoogle Scholar
  29. 29.
    K. Wang, C.Y. Chen, M. Huang, Y.S. Wang, Y.M. Zou, J.L. Zeng, J. Phys. B 43, 175202 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    K. Wang, C.Y. Chen, M. Huang, Y.S. Wang, Y.M. Zou, At. Data Nucl. Data Tables 97, 426 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    L.J. Curtis, C.E. Theodosiou, Phys. Rev. A 39, 605 (1989)ADSCrossRefGoogle Scholar
  32. 32.
    M. Inokuti, Rev. Mod. Phys. 43, 297 (1971)ADSCrossRefGoogle Scholar
  33. 33.
    R. Bartiromo, F. Bombarda, R. Giannella, Phys. Rev. A 32, 531 (1985)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute of Applied Physics and Computational MathematicsBeijingP.R. China
  2. 2.Shanghai EBIT Lab, Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan UniversityShanghaiP.R. China
  3. 3.Department of RadiotherapyShanghai Changhai Hospital, Second Military Medical UniversityShanghaiP.R. China
  4. 4.College of Science, National University of Defense TechnologyChangshaP.R. China
  5. 5.Hebei Key Lab of Optic-Electronic Information and Materials, The College of Physics Science and Technology, Hebei UniversityBaodingP.R. China

Personalised recommendations