Skip to main content
Log in

The LLE, pattern formation and a novel coherent source

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The LLE was introduced in order to provide a paradigmatic model for spontaneous spatial pattern formation in the field of nonlinear optics. In the first part of this paper we describe in details its historical evolution. We underline, first of all, that the multimode instability of optical bistability represents an important precursor of the LLE. Next, we illustrate how the original LLE was conceived in order to describe pattern formation in the planes transverse with respect to the longitudinal direction of propagation of light in the nonlinear medium contained in the optical cavity. We emphasize, in particular, the crucial role of the low transmission limit (also called mean field limit or uniform field limit in the literature) in determining the simplicity of the equation. In discussing transverse pattern formation in the LLE, we underline incidentally the presence of very important quantum aspects related to squeezing of quantum fluctuations and to quantum imaging. We consider not only the case of global patterns but also localized structures (cavity solitons and their control). Then we turn to the temporal/longitudinal version of the LLE, formulated by Haelterman et al. [H. Haelterman, S. Trillo, S. Wabnitz, Opt. Commun. 91, 401 (1992)], and to its equivalence with the transverse LLE in 1D, discussing especially the phenomenon of temporal cavity solitons, their experimental observation and their control. Finally for the first part we turn to the very recent topic of broadband frequency combs, observed in a versatile multiwavelength coherent source (driven Kerr microcavity), which is raising a lot of interest and of research activities because of its very favourable physical characteristics, which support quite promising applicative perspectives. Kerr microcavities realize in an ideal manner the basic assumptions of the LLE, and the spontaneous formation of travelling patterns along the microcavity is the crucial mechanism which creates the combs and governs their features. Thus the LLE represents a case of spontaneous pattern formation which is immediately linked to a promising applicative avenue. The second part of the paper is devoted to the detailed derivation from the Maxwell-Bloch equations of the temporal/longitudinal LLE which was proposed by ourselves many years ago without providing a complete derivation. Such an equation is equivalent to the standard temporal/longitudinal version of the LLE in the case of anomalous dispersion. Our derivation elucidates in the best way the connection between the temporal/longitudinal version of the LLE and the multimode instability of optical bistability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.A. Lugiato, R. Lefever, Phys. Rev. Lett. 58, 2209 (1987)

    Article  ADS  Google Scholar 

  2. A.M. Turing, Phil. Trans. R. Soc. London B 237, 37 (1952)

    Article  ADS  Google Scholar 

  3. H. Haken, Synergetics: an Introduction (Springer-Verlag, Berlin, 1977)

  4. G. Nicolis, I. Prigogine, Self-organization in nonequilibrium systems. From dissipative structures to order through fluctuations (Wiley, New York, 1977)

  5. L.A. Lugiato, Chaos, Solitons and Fractals 4, 1251 (1994)

    Article  ADS  Google Scholar 

  6. H.M. Gibbs, S.L. McCall, T.N.C. Venkatesan, Phys. Rev. Lett. 36, 1135 (1976)

    Article  ADS  Google Scholar 

  7. H. Haelterman, S. Trillo, S. Wabnitz, Opt. Commun. 91, 401 (1992)

    Article  ADS  Google Scholar 

  8. R. Bonifacio, L.A. Lugiato, Lett. Nuovo Cim. 21, 510 (1978)

    Article  Google Scholar 

  9. R. Bonifacio, M. Gronchi, L.A. Lugiato, Opt. Commun. 30, 129 (1979)

    Article  ADS  Google Scholar 

  10. D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, S.T. Cundiff, Science 288, 635 (2000)

    Article  ADS  Google Scholar 

  11. Th. Udem, R. Holzwarth, T.W. Hänsch, Nature 416, 233 (2002)

    Article  ADS  Google Scholar 

  12. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T.J. Kippenberg, Nature 450, 1214 (2007)

    Article  ADS  Google Scholar 

  13. Y.K. Chembo, C.R. Menyuk, Phys. Rev. A 87, 053852 (2013)

    Article  ADS  Google Scholar 

  14. S. Coen, H.G. Randle, Th. Sylvestre, M. Erkintalo, Opt. Lett. 38, 37 (2013)

    Article  ADS  Google Scholar 

  15. C. Godey, I.V. Balakireva, A. Coillet, Y.K. Chembo, Phys. Rev. A 89, 063814 (2014)

    Article  ADS  Google Scholar 

  16. M.R.E. Lamont, Y. Okawachi, A.L. Gaeta, Opt. Lett. 38, 3478 (2013)

    Article  ADS  Google Scholar 

  17. A.B. Matsko, A.A. Savchenkov, W. Liang, V.S. Ilchenko, D. Seidel, L. Maleki, Opt. Lett. 36, 2845 (2011)

    Article  ADS  Google Scholar 

  18. B.R. Mollow, Phys. Rev. A 5, 2217 (1972)

    Article  ADS  Google Scholar 

  19. A.M. Bonch-Bruevich, V.A. Khodovoi, N.A. Chigir, Sov. Phys. J. Exp. Theor. Phys. 40, 1027 (1975)

    ADS  Google Scholar 

  20. F.Y. Wu, S. Exekiel, M. Ducloy, B.R. Mollow, Phys. Rev. Lett. 38, 1077 (1977)

    Article  ADS  Google Scholar 

  21. L.A. Lugiato, F. Prati, M. Brambilla, Nonlinear Optical Systems (Cambridge University Press, Cambridge, 2015)

  22. I.S. Grudinin, L. Baumgartel, N. Yu, Opt. Express 20, 6604 (2012)

    Article  ADS  Google Scholar 

  23. Y. Okawachi, K. Saha, J.S. Levy, Y.H. Wen, M. Lipson, A.L. Gaeta, Opt. Lett. 36, 3398 (2011)

    Article  ADS  Google Scholar 

  24. T. Herr, V. Brasch, J.D. Jost, I. Mirgorodskiy, G. Lihachev, M.L. Gorodetsky, T.J. Kippenberg, Phys. Rev. Lett. 113, 123901 (2014)

    Article  ADS  Google Scholar 

  25. W. Liang, D. Eliyahu, V. Ilchenko, A.A. Savchenkov, A.B. Matsko, D. Seidel, L. Maleki, Nat. Commun. 6, 7957 (2015)

    Article  ADS  Google Scholar 

  26. S. Coen, M. Erkintalo, Opt. Lett. 38, 1790 (2013)

    Article  ADS  Google Scholar 

  27. A. Coillet, Y.K. Chembo, Chaos 24, 013113 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  28. J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, Ph. Schindler, C. Weimann, W. Freude, I.V. Balakireva, L. Larger, Ch. Koos, Y.K. Chembo, Phys. Rev. Lett. 114, 093902 (2015)

    Article  ADS  Google Scholar 

  29. J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, Ph. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T.J. Kippenberg, C. Koos, Nat. Photon. 8, 375 (2014)

    Article  ADS  Google Scholar 

  30. Y.K. Chembo, Nanophotonics 5, 214 (2016)

    Article  Google Scholar 

  31. M. Brambilla, F. Castelli, A. Gatti, L.A. Lugiato, F. Prati, Instabilities and quantum noise reduction in nonlinear optical mixing, in Nonlinear Dynamics and Spatial Complexity in Optical Systems, Proceedings of the Firsty First (1992), Scottish University Summer School in Physics, edited by R.G. Harrison, J.S. Uppal, SUSSP Proceedings 41, 115 (1993)

  32. M. Brambilla, F. Castelli, L.A. Lugiato, F. Prati, G. Strini, Opt. Commun. 83, 367 (1991)

    Article  ADS  Google Scholar 

  33. H. Risken, K. Nummedal, J. Appl. Phys. 39, 4662 (1968)

    Article  ADS  Google Scholar 

  34. R. Graham, H. Haken, Z. Phys. 213, 420 (1968)

    Article  ADS  Google Scholar 

  35. L.A. Lugiato, Theory of optical bistability, Progress in Optics, Vol. XXI, edited by E. Wolf (Elsevier-North Holland, Amsterdam, 1984)

  36. L.A. Lugiato, Opt. Commun. 33, 108 (1980)

    Article  ADS  Google Scholar 

  37. B. Ségard, B. Macke, L.A. Lugiato, F. Prati, M. Brambilla, Phys. Rev. A 39, 703 (1989)

    Article  ADS  Google Scholar 

  38. I. Prigogine, R. Lefever, J. Chem. Phys. 48, 1695 (1968)

    Article  ADS  Google Scholar 

  39. R. Bonifacio, L.A. Lugiato, Lett. Nuovo Cim. 21, 505 (1978)

    Article  Google Scholar 

  40. K. Ikeda, Opt. Commun. 30, 257 (1979)

    Article  ADS  Google Scholar 

  41. J.V. Moloney, H.M. Gibbs, Phys. Rev. Lett. 48, 1607 (1982)

    Article  ADS  Google Scholar 

  42. D.W. McLaughlin, J.V. Moloney, A.C. Newell, Phys. Rev. Lett. 51, 75 (1983)

    Article  ADS  Google Scholar 

  43. G. Nicolis, Introduction to nonlinear science (Cambridge University Press, Cambridge, 1995)

  44. L.A. Lugiato, R. Lefever, Diffraction stationary patterns in passive optical systems, in Interaction of Radiation with Matter, a volume in honour of Adriano Gozzini (Quaderni della Scuola Normale Superiore, Pisa, 1987)

  45. G. Grynberg, E. Le Bihan, P. Verkerk, P. Simoneau, J.R.R. Leite, D. Bloch, S. Le Boiteux, M. Ducloy, Opt. Commun. 67, 363 (1988)

    Article  ADS  Google Scholar 

  46. L.A. Lugiato, F. Castelli, Phys. Rev. Lett. 68, 3284 (1992)

    Article  ADS  Google Scholar 

  47. A. Gatti, E. Brambilla, L.A. Lugiato, Quantum Imaging, in Progress in Optics, Vol. LI, edited by E. Wolf (Elsevier North-Holland, Amsterdam, 2008), p. 251

  48. M.I. Kolobov, Rev. Mod. Phys. 71, 1539 (1999)

    Article  ADS  Google Scholar 

  49. D. Gomila, P. Colet, Phys. Rev. A 68, 011801(R) (2003)

    Article  ADS  Google Scholar 

  50. D. Gomila, P. Colet, Phys. Rev. E 76, 016217 (2007)

    Article  ADS  Google Scholar 

  51. P. Coullet, C. Riera, C. Tresser, Chaos 14, 193 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  52. M. Tlidi, P. Mandel, R. Lefever, Phys. Rev. Lett. 73, 640 (1994)

    Article  ADS  Google Scholar 

  53. W.J. Firth, G.K. Harkness, A. Lord, J. McSloy, D. Gomila, P. Colet, J. Opt. Soc. Am. B 19, 747 (2002)

    Article  ADS  Google Scholar 

  54. L.A. Lugiato, IEEE J. Quantum Electron. 39, 193 (2003)

    Article  ADS  Google Scholar 

  55. Th. Ackemann, W.J. Firth, G.-L. Oppo, Fundamentals an applications of spatial dissipative solitons in photonic devices, in Advances in Atomic, Molecular and Optical Physics, edited by P.R. Berman, E. Arimondo, C.C. Lin (Elsevier North-Holland, Amsterdam, 2009), Vol. 57, p. 323

  56. W.J. Firth, C.O. Weiss, Opt. Photon. News 13, 54 (2002)

    Article  ADS  Google Scholar 

  57. V. Odent, M. Taki, E. Louvergneaux, New J. Phys. 13, 113026 (2011)

    Article  ADS  Google Scholar 

  58. V. Odent, M. Tlidi, M.G. Clerc, P. Glorieux, E. Louvergnaux, Phys. Rev. A 90, 011806 (R) (2014)

    Article  ADS  Google Scholar 

  59. S. Barland, J.R. Tredicce, M. Brambilla, L.A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödl, M. Miller, R. Jäger, Nature 419, 699 (2002)

    Article  ADS  Google Scholar 

  60. F. Pedaci, P. Genevet, S. Barland, M. Giudici, J.R. Tredicce, Appl. Phys. Lett. 89, 221111 (2006)

    Article  ADS  Google Scholar 

  61. S. Coen, M. Haelterman, Opt. Lett. 24, 80 (1999)

    Article  ADS  Google Scholar 

  62. S. Coen, M. Haelterman, Opt. Lett. 26, 39 (2001)

    Article  ADS  Google Scholar 

  63. F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, Ph. Emplit, M. Haelterman, Nat. Photon. 4, 471 (2010)

    Article  ADS  Google Scholar 

  64. W.J. Firth, Nat. Photon. (News & Views) 4, 415 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  65. F. Leo, L. Gelens, Ph. Emplit, M. Haelterman, S. Coen, Opt. Expr. 21, 9180 (2013)

    Article  ADS  Google Scholar 

  66. J.K. Jang, M. Erkintalo, S.G. Murdoch, S. Coen, Opt. Lett. 40, 4755 (2015)

    Article  ADS  Google Scholar 

  67. J.K. Jang, M. Erkintalo, S. Coen, S.G. Murdoch, Nat. Commun. 6, 7370 (2015)

    Article  ADS  Google Scholar 

  68. M.-J. Schmidberger, D. Novoa, F. Biancalana, P.St.J. Russell, N.J. Joly, Opt. Expr. 22, 3045 (2014)

    Article  ADS  Google Scholar 

  69. M. Tlidi, P. Mandel, Phys. Rev. A 59, R2575(R) (1999)

    Article  ADS  Google Scholar 

  70. S.D. Jenkins, F. Prati, L.A. Lugiato, L. Columbo, M. Brambilla, Phys. Rev. A 80, 033832 (2009)

    Article  ADS  Google Scholar 

  71. A. Coillet, Y.K. Chembo, Opt. Lett. 39, 1529 (2014)

    Article  ADS  Google Scholar 

  72. Y.K. Chembo, Phys. Rev. A 93, 033820 (2016)

    Article  ADS  Google Scholar 

  73. A. Dutt, K. Luke, S. Manipatruni, A.L. Gaeta, P. Nussenzveig, M. Lipson, Phys. Rev. Appl. 3, 044005 (2015)

    Article  ADS  Google Scholar 

  74. F. Castelli, L.A. Lugiato, M. Vadacchino, Nuovo Cimento D 10, 183 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Prati.

Additional information

Contribution to the Topical Issue “Theory and applications of the Lugiato-Lefever Equation”, edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castelli, F., Brambilla, M., Gatti, A. et al. The LLE, pattern formation and a novel coherent source. Eur. Phys. J. D 71, 84 (2017). https://doi.org/10.1140/epjd/e2017-70754-1

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-70754-1

Navigation