Skip to main content
Log in

Role of spectroscopic diagnostics in studying nanosecond laser-plasma interaction

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We studied the impact of varying the intensity of Nd:YAG nanosecond 1.06 μm laser radiation on the morphology and internal structure of copper plasma plumes were examined. Standard diagnostic techniques used to deduce axial distributions of electron density and temperature revealed effects of a pronounced plasma screening regime. Methods of fast imaging spectroscopy are used to examine the transition from weak- to high-screening plasma, applying irradiance on the order of 109 W cm-2 in helium atmosphere. Behavior of both ionized and neutral species was observed up to 1 μs after the laser pulse. Showing significant differences with an increase of laser irradiance, the change in plasma propagation mechanisms is attributed to internal shockwave dynamics within the plasma plume. Implications of observed behavior to plasma uniformity can affect diagnostics, and are relevant to both modeling and applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.B. Corkum, K. Ferenc, Nat. Phys. 3, 381 (2007)

    Article  Google Scholar 

  2. L.J. Radziemski, D.A. Cremers, Laser-Induced Plasmas and Applications (Marcel Dekker, New York, 1989)

  3. A.W. Miziolek, V. Palleschi, I. Schechter, Laser Induced Breakdown Spectroscopy (Cambridge University Press, New York, 2006)

  4. R. Noll, Laser-Induced Breakdown Spectroscopy Fundamentals and Applications (Springer-Verlag, Berlin Heidelberg, 2012)

  5. J.R. Freeman, S.S. Harilal, A. Hassanein, J. Appl. Phys. 110, 083303 (2011)

    Article  ADS  Google Scholar 

  6. T. Sizyuk, A. Hassanein, Phys. Plasmas 19, 083102 (2012)

    Article  ADS  Google Scholar 

  7. S.-B. Wen, X. Mao, R. Greif, R.E. Russo, J. Appl. Phys. 101, 123105 (2007)

    Article  ADS  Google Scholar 

  8. J. Perriére, C. Boulmer-Leborgne, R. Benzerga, S. Tricot, J. Phys. D: Appl. Phys. 40, 7069 (2007)

    Article  ADS  Google Scholar 

  9. N.G. Semaltianos, S. Logothetidis, W. Perrie, S. Romani, R.J. Potter, M. Sharp, P. French, G. Dearden, K.G. Watkins, Europhys. Lett. 84, 47001 (2008)

    Article  ADS  Google Scholar 

  10. R.K. Singh, J. Narayan, Phys. Rev. B 41, 8843 (1990)

    Article  ADS  Google Scholar 

  11. R. Reitano, P. Baeri, Europhys. Lett. 43, 565 (1998)

    Article  ADS  Google Scholar 

  12. S. Majumdar, S. Van Dijken, J. Phys. D: Appl. Phys. 47, 034010 (2013)

    Article  ADS  Google Scholar 

  13. M. Lackner, S. Charareh, F. Winter, K.F. Iskra, D. Rüdisser, T. Neger, H. Kopecek, E. Wintner, Opt. Express 12, 45 (2004)

    Article  Google Scholar 

  14. D.B. Geohegan, Appl. Phys. Lett. 60, 2732 (1992)

    Article  ADS  Google Scholar 

  15. F. Garrelie, J. Aubreton, A. Catherinot, J. Appl. Phys. 83, 5075 (1998)

    Article  ADS  Google Scholar 

  16. N. Huber, J. Gruber, N. Arnold, J. Heitz, D. Bäuerle, Europhys. Lett. 51, 674 (2000)

    Article  ADS  Google Scholar 

  17. M.A. Hafez, M.A. Khedr, F.F. Elaksher, Y.E. Gamal, Plasma Sources Sci. Technol. 12, 185 (2003)

    Article  ADS  Google Scholar 

  18. V. Motto-Ros, Q.L. Ma, S. Grégoire, W.Q. Lei, X.C. Wang, F. Pelascini, F. Surma, V. Detalle, J. Yu, Spectrochim. Acta B 74, 11 (2012)

    Article  ADS  Google Scholar 

  19. S.S. Harilal, G.V. Miloshevsky, P.K. Diwakar, N.L. LaHaye, A. Hassanein, Phys. Plasmas 19, 083504 (2012)

    Article  ADS  Google Scholar 

  20. X.L. Mao, W.T. Chan, M.A. Shannon, R.E. Russo, J. Appl. Phys. 74, 4915 (1993)

    Article  ADS  Google Scholar 

  21. N. Farid, S.S. Harilal, H. Ding, A. Hassanein, J. Appl. Phys. 115, 033107 (2014)

    Article  ADS  Google Scholar 

  22. N. Konjević, M. Ivković, S. Jovićević, Spectrochim. Acta B 65, 593 (2010)

    Article  ADS  Google Scholar 

  23. M. Cirisan, M. Cvejić, M.R. Gavrilović, S. Jovićević, N. Konjević, J. Hermann, J. Quant. Spectrosc. Radiat. Transf. 133, 652 (2014)

    Article  ADS  Google Scholar 

  24. M. Burger, M. Skočić, M. Ljubisavljević, Z. Nikolić, S. Djeniže, Eur. Phys. J. D 68, 223 (2014)

    Article  ADS  Google Scholar 

  25. J. Hermann, A. Lorusso, A. Perrone, F. Strafella, C. Dutouquet, B. Torralba, Phys. Rev. E 92, 053103 (2015)

    Article  ADS  Google Scholar 

  26. M. Burger, J. Hermann, Spectrochim. Acta Part B 122, 118 (2016)

    Article  ADS  Google Scholar 

  27. M. Von Allmen, A. Blatter, Laser-Beam Interactions with Materials – Physical Principles and Applications, 2nd edn. (Springer-Verlag, Berlin, 1995)

  28. J.A. Aguilera, C. Aragon, F. Penalba, Appl. Surf. Sci. 309, 127 (1998)

    Google Scholar 

  29. P. Mulser, D. Bauer, High Power Laser-Matter Interaction (Springer, Berlin, 2010)

  30. P.W. Chan, Y.W. Chan, H.S. Ng, Phys. Lett. A 61, 151 (1977)

    Article  ADS  Google Scholar 

  31. W.T. Walter, Change in reflectivity of metals under intense laser radiation. Final technical report (Polytechnic Institute of New York, 1981)

  32. N.M. Bulgakova, A.B. Evtushenko, Y.G. Shukhov, S.I. Kudryashov, A.V. Bulgakov, Appl. Surf. Sci. 257, 10876 (2011)

    Article  ADS  Google Scholar 

  33. Z. Chen, A. Bogaerts, J. Appl. Phys. 97, 063305 (2005)

    Article  ADS  Google Scholar 

  34. M. Aghaei, S. Mehrabian, S.H. Tavassoli, J. Appl. Phys. 104, 053303 (2008)

    Article  ADS  Google Scholar 

  35. D. Autrique, G. Clair, D. L’Hermite, V. Alexiades, A. Bogaerts, B. Rethfeld, J. Appl. Phys. 114, 023301 (2013)

    Article  ADS  Google Scholar 

  36. M. Skočić, S. Bukvić, Spectrochim. Acta Part B 125, 103 (2016)

    Article  ADS  Google Scholar 

  37. X. Mao, S. Wen, R.E. Russo, Appl. Surf. Sci. 253, 6316 (2007)

    Article  ADS  Google Scholar 

  38. J.F.Y. Gravel, D. Boudreau, Spectrochim. Acta Part B 64, 56 (2009)

    Article  ADS  Google Scholar 

  39. M. Burger, D. Pantić, Z. Nikolić, S. Djeniže, J. Quant. Spectrosc. Radiat. Transf. 170, 19 (2016)

    Article  ADS  Google Scholar 

  40. A.M. El Sherbini, C.G. Parigger, Spectrochim. Acta Part B 116, 8 (2016)

    Article  ADS  Google Scholar 

  41. A. Kramida, Y. Ralchenko, J. Reader, NIST ASD Team, NIST Atomic Spectra Database, National Institute of Standards and Technology, Gaithersburg, MD (2015), http://physics.nist.gov/asd

  42. R.L. Kurucz, Atomic spectral line database from CD-ROM 23 (1995)

  43. H.R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964)

  44. H.R. Griem, Spectral line broadening by plasmas (Academic Press, New York, 1974)

  45. C.G. Parigger, G. Gautam, D.M. Surmick, Int. Rev. At. Mol. Phys. 6, 43 (2015)

    Google Scholar 

  46. S. Augst, D. Strickland, D.D. Meyerhofer, S.L. Chin, J.H. Eberly, Phys. Rev. Lett. 63, 2212 (1989)

    Article  ADS  Google Scholar 

  47. F. Yergeau, S.L. Chin, P. Lavigne, J. Phys. B 20, 723 (1987)

    Article  ADS  Google Scholar 

  48. G. Gibson, T.S. Luk, C.K. Rhodes, Phys. Rev. A 41, 5049 (1990)

    Article  ADS  Google Scholar 

  49. M. Hashida, S. Namba, K. Okamuro, S. Tokita, S. Sakabe, Phys. Rev. B 81, 115442 (2010)

    Article  ADS  Google Scholar 

  50. S.-B. Wen, X. Mao, R. Greif, R.E. Russo, J. Appl. Phys. 101, 023115 (2007)

    Article  ADS  Google Scholar 

  51. D.G. Akhmetov, Vortex Rings (Springer-Verlag, Berlin, Heidelberg, 2009)

  52. N. Arnold, J. Gruber, J. Heitz, Appl. Phys. A 69, S87 (1999)

    Article  ADS  Google Scholar 

  53. S.-B. Wen, X. Mao, R. Greif, R.E. Russo, J. Appl. Phys. 101, 023114 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloš Burger.

Additional information

Contribution to the Topical Issue “Physics of Ionized Gases (SPIG 2016)”, edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burger, M., Pantić, D., Nikolić, Z. et al. Role of spectroscopic diagnostics in studying nanosecond laser-plasma interaction. Eur. Phys. J. D 71, 123 (2017). https://doi.org/10.1140/epjd/e2017-70750-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-70750-5

Navigation