A review of recent advances in molecular simulation of graphene-derived membranes for gas separation

  • Seyyed Mahmood Fatemi
  • Zeynab Abbasi
  • Halimeh Rajabzadeh
  • Seyyed Ali Hashemizadeh
  • Amir Noori Deldar
Regular Article


To obtain an ideal membrane for gas separation the following three characteristics should be considered: the membrane should be as thin as possible, be mechanically robust, and have well-defined pore sizes. These features will maximize its solvent flux, preserve it from fracture, and guarantee its selectivity. These attractive properties of graphene-derived membranes introduce them as appropriate candidates for gas separation and gas molecular-sieving processes in nanoscale dimensions. The current effort has focused on two issues, including the review of the most newly progression on drilling holes in single graphene membranes for making ultrathin membranes for gas separation, and studying functionalized nanoporous sheet and graphene-derived membranes, including doped graphene, graphene oxide, fluorographene, and reduced graphene oxide from theoretical perspectives for making functional coatings for nano ultrafiltration for gas separation. We investigated the basic mechanism of separation by membranes derived from graphene and relevant possible applications. Functionalized nanoporous membranes as novel approach are characterized by low energy cost in realizing high throughput molecular-sieving separation.

Graphical abstract


Molecular Physics and Chemical Physics 

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Physical ChemistrySchool of Chemistry, College of Science, University of TehranTehranIran
  2. 2.Faculty of Chemistry, Tehran North Branch, Islamic Azad UniversityTehranIran
  3. 3.Department of ChemistryDezful Branch, Islamic Azad UniversityDezfulIran
  4. 4.Physics Department, Faculty of Science, Payame Noor UniversityTehranIran
  5. 5.Young Researchers and Elite Club, Quchan Branch, Islamic Azad UniversityQuchanIran

Personalised recommendations