A review of recent advances in molecular simulation of graphene-derived membranes for gas separation

  • Seyyed Mahmood Fatemi
  • Zeynab Abbasi
  • Halimeh Rajabzadeh
  • Seyyed Ali Hashemizadeh
  • Amir Noori Deldar
Regular Article

Abstract

To obtain an ideal membrane for gas separation the following three characteristics should be considered: the membrane should be as thin as possible, be mechanically robust, and have well-defined pore sizes. These features will maximize its solvent flux, preserve it from fracture, and guarantee its selectivity. These attractive properties of graphene-derived membranes introduce them as appropriate candidates for gas separation and gas molecular-sieving processes in nanoscale dimensions. The current effort has focused on two issues, including the review of the most newly progression on drilling holes in single graphene membranes for making ultrathin membranes for gas separation, and studying functionalized nanoporous sheet and graphene-derived membranes, including doped graphene, graphene oxide, fluorographene, and reduced graphene oxide from theoretical perspectives for making functional coatings for nano ultrafiltration for gas separation. We investigated the basic mechanism of separation by membranes derived from graphene and relevant possible applications. Functionalized nanoporous membranes as novel approach are characterized by low energy cost in realizing high throughput molecular-sieving separation.

Graphical abstract

Keywords

Molecular Physics and Chemical Physics 

References

  1. 1.
    K. Maqsood, J. Pal, D. Turunawarasu, A.J. Pal, S. Ganguly, Korean J. Chem. Eng. 31, 1120 (2014)CrossRefGoogle Scholar
  2. 2.
    P.C. Wankat, K.P. Kostroski, Sep. Sci. Technol. 46, 1539 (2011)CrossRefGoogle Scholar
  3. 3.
    F.V. Lopes, C.A. Grande, A.E. Rodrigues, Chem. Eng. Sci. 66, 303 (2011)CrossRefGoogle Scholar
  4. 4.
    M.F. Hasan, R.C. Baliban, J.A. Elia, C.A. Floudas, Ind. Eng. Chem. Res. 51, 15665 (2012)CrossRefGoogle Scholar
  5. 5.
    M.A. Aroon, A.F. Ismail, T. Matsuura, M.M. Montazer-Rahmati, Sep. Purif. Technol. 75, 229 (2010)CrossRefGoogle Scholar
  6. 6.
    D.F. Sanders, Z.P. Smith, R. Guo, L.M. Robeson, J.E. McGrath, D.R. Paul, B.D. Freeman, Polymer 54, 4729 (2013)CrossRefGoogle Scholar
  7. 7.
    Y. Huang, R.W. Baker, L.M. Vane, Ind. Eng. Chem. Res. 49, 3760 (2010)CrossRefGoogle Scholar
  8. 8.
    H.W. Kim, H.W. Yoon, S.-M. Yoon, B.M. Yoo, B.K. Ahn, Y.H. Cho, H.J. Shin, H. Yang, U. Paik, S. Kwon, Science 342, 91 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    J. Azamat, J. Water Environ. Nanotechnol. 2, 26 (2017)Google Scholar
  10. 10.
    F. Najafi, Int. Nano Lett. 5, 171 (2015)CrossRefGoogle Scholar
  11. 11.
    W.J. Lau, A.F. Ismail, N. Misdan, M.A. Kassim, Desalination 287, 190 (2012)CrossRefGoogle Scholar
  12. 12.
    O.-K. Park, J.-Y. Hwang, M. Goh, J.H. Lee, B.-C. Ku, N.-H. You, Macromolecules 46, 3505 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    W. Yuan, J. Chen, G. Shi, Mater. Today 17, 77 (2014)CrossRefGoogle Scholar
  14. 14.
    S.P. Koenig, L. Wang, J. Pellegrino, J.S. Bunch, Nat. Nanotechnol. 7, 728 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    M.T. Ravanchi, T. Kaghazchi, A. Kargari, Desalination 235, 199 (2009)CrossRefGoogle Scholar
  16. 16.
    N. Tahri, I. Jedidi, S. Ayadi, S. Cerneaux, M. Cretin, R.B. Amar, Desalin. Water Treat. 57, 23473 (2016)CrossRefGoogle Scholar
  17. 17.
    F. Qin, S. Li, P. Qin, M.N. Karim, T. Tan, Green Chem. 16, 1262 (2014)CrossRefGoogle Scholar
  18. 18.
    R.W. Baker, B.T. Low, Macromolecules 47, 6999 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    H. Strathmann, AIChE J. 47, 1077 (2001)CrossRefGoogle Scholar
  20. 20.
    K.M. Steel, W.J. Koros, Carbon 41, 253 (2003)CrossRefGoogle Scholar
  21. 21.
    M.C. Duke, J.D. Da Costa, D.D. Do, P.G. Gray, G.Q. Lu, Adv. Funct. Mater. 16, 1215 (2006)CrossRefGoogle Scholar
  22. 22.
    A. Ghaffari, M.S. Tehrani, S.W. Husain, M. Anbia, P.A. Azar, J. Nanostruct. Chem. 4, 1 (2014)CrossRefGoogle Scholar
  23. 23.
    J. Caro, M. Noack, Microporous Mesoporous Mater. 115, 215 (2008)CrossRefGoogle Scholar
  24. 24.
    F. Roa, J.D. Way, R.L. McCormick, S.N. Paglieri, Chem. Eng. J. 93, 11 (2003)CrossRefGoogle Scholar
  25. 25.
    S. Samadi, F. Khalilian, A. Tabatabaee, J. Nanostruct. Chem. 4, 1 (2014)CrossRefGoogle Scholar
  26. 26.
    R. Nagarale, G. Gohil, V.K. Shahi, Adv. Colloid Interface Sci. 119, 97 (2006)CrossRefGoogle Scholar
  27. 27.
    T.-S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja, Prog. Polym. Sci. 32, 483 (2007)CrossRefGoogle Scholar
  28. 28.
    A. Rahimpour, M. Jahanshahi, N. Mortazavian, S.S. Madaeni, Y. Mansourpanah, Appl. Surf. Sci. 256, 1657 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    S. Kaldis, G. Skodras, G. Sakellaropoulos, Fuel Process. Technol. 85, 337 (2004)CrossRefGoogle Scholar
  30. 30.
    M. Ulbricht, Polymer 47, 2217 (2006)CrossRefGoogle Scholar
  31. 31.
    R. Baker, Membr. Technol. 138, 5 (2001)CrossRefGoogle Scholar
  32. 32.
    S.M. Fatemi, M. Foroutan, J. Nanostruct. Chem. 6, 29 (2016)CrossRefGoogle Scholar
  33. 33.
    S.M. Fatemi, M. Foroutan, J. Nanostruct. Chem. 5, 243 (2015)CrossRefGoogle Scholar
  34. 34.
    M. Foroutan, S.M. Fatemi, in Encyclopedia of Nanoscience and Nanotechnology, edited by H.S. Nalwa (American Scientific Publishers, Valencia, CA, 2017)Google Scholar
  35. 35.
    H. Sha, R. Faller, Comput. Mater. Sci. 114, 160 (2016)CrossRefGoogle Scholar
  36. 36.
    S. Fatemi, M. Foroutan, Int. J. Environ. Sci. Technol. 13, 457 (2016)CrossRefGoogle Scholar
  37. 37.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    M.S.A. Bhuyan, M.N. Uddin, M.M. Islam, F.A. Bipasha, S.S. Hossain, Int. Nano Lett. 6, 65 (2016)CrossRefGoogle Scholar
  39. 39.
    M. Rajabi, O. Moradi, K. Zare, Int. Nano Lett. 7, 35 (2017)CrossRefGoogle Scholar
  40. 40.
    Y.-J. Wan, L.-C. Tang, L.-X. Gong, D. Yan, Y.-B. Li, L.-B. Wu, J.-X. Jiang, G.-Q. Lai, Carbon 69, 467 (2014)CrossRefGoogle Scholar
  41. 41.
    B. Yuan, C. Bao, L. Song, N. Hong, K.M. Liew, Y. Hu, Chem. Eng. J. 237, 411 (2014)CrossRefGoogle Scholar
  42. 42.
    G. Xin, T. Yao, H. Sun, S.M. Scott, D. Shao, G. Wang, J. Lian, Science 349, 1083 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    J. Fan, Z. Shi, M. Lian, H. Li, J. Yin, J. Mater. Chem. A 1, 7433 (2013)CrossRefGoogle Scholar
  44. 44.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    B. Javvaji, P.R. Budarapu, V. Sutrakar, D.R. Mahapatra, M. Paggi, G. Zi, T. Rabczuk, Comput. Mater. Sci. 125, 319 (2016)CrossRefGoogle Scholar
  46. 46.
    J.S. Bunch, S.S. Verbridge, J.S. Alden, A.M. Van Der Zande, J.M. Parpia, H.G. Craighead, P.L. McEuen, Nano Lett. 8, 2458 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    L. Tsetseris, S. Pantelides, Carbon 67, 58 (2014)CrossRefGoogle Scholar
  48. 48.
    Y. Wang, Q. Yang, J. Li, J. Yang, C. Zhong, Phys. Chem. Chem. Phys. 18, 8352 (2016)CrossRefGoogle Scholar
  49. 49.
    G. Liu, W. Jin, N. Xu, Angew. Chem. Int. Ed. 55, 13384 (2016)CrossRefGoogle Scholar
  50. 50.
    S. Gadipelli, Z.X. Guo, Prog. Mater. Sci. 69, 1 (2015)CrossRefGoogle Scholar
  51. 51.
    S. Tkachev, E.Y. Buslaeva, S. Gubin, Inorg. Mater. 47, 1 (2011)CrossRefGoogle Scholar
  52. 52.
    S. Jiao, Z. Xu, ACS Appl. Mater. Interfaces 7, 9052 (2015)CrossRefGoogle Scholar
  53. 53.
    C. Sun, B. Wen, B. Bai, Sci. Bull. 60, 1807 (2015)CrossRefGoogle Scholar
  54. 54.
    P. Sun, K. Wang, H. Zhu, Adv. Mater. 28, 2287 (2016)CrossRefGoogle Scholar
  55. 55.
    Z. Tian, S.M. Mahurin, S. Dai, D.-E. Jiang, Nano Lett. 17, 1802 (2017)ADSCrossRefGoogle Scholar
  56. 56.
    R. Nieman, A. Das, A.J. Aquino, R.G. Amorim, F.B. Machado, H. Lischka, Chem. Phys. 482, 346 (2017)ADSCrossRefGoogle Scholar
  57. 57.
    R. Majidi, A. Karami, J. Nanostruct. 4, 1 (2014)Google Scholar
  58. 58.
    S. Tadepalli, H. Hamper, S.H. Park, S. Cao, R.R. Naik, S. Singamaneni, ACS Biomater. Sci. Eng. 2, 1084 (2016)CrossRefGoogle Scholar
  59. 59.
    D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, Chem. Soc. Rev. 39, 228 (2010)CrossRefGoogle Scholar
  60. 60.
    M.O. Danilov, I.A. Slobodyanyuk, J. Nanostruct. Chem. 3, 49 (2013)CrossRefGoogle Scholar
  61. 61.
    R. Nair, H. Wu, P. Jayaram, I. Grigorieva, A. Geim, Science 335, 442 (2012)ADSCrossRefGoogle Scholar
  62. 62.
    Y. Xu, H. Bai, G. Lu, C. Li, G. Shi, J. Am. Chem. Soc. 130, 5856 (2008)CrossRefGoogle Scholar
  63. 63.
    H.-K. Jeong, Y.P. Lee, M.H. Jin, E.S. Kim, J.J. Bae, Y.H. Lee, Chem. Phys. Lett. 470, 255 (2009)ADSCrossRefGoogle Scholar
  64. 64.
    S. Cerveny, F. Barroso-Bujans, A. Alegria, J. Colmenero, J. Phys. Chem. C 114, 2604 (2010)CrossRefGoogle Scholar
  65. 65.
    A. Buchsteiner, A. Lerf, J. Pieper, J. Phys. Chem. B 110, 22328 (2006)CrossRefGoogle Scholar
  66. 66.
    J.T. Robinson, J.S. Burgess, C.E. Junkermeier, S.C. Badescu, T.L. Reinecke, F.K. Perkins, M.K. Zalalutdniov, J.W. Baldwin, J.C. Culbertson, P.E. Sheehan, Nano Lett. 10, 3001 (2010)ADSCrossRefGoogle Scholar
  67. 67.
    W. Huang, Q.-X. Pei, Z. Liu, Y.-W. Zhang, Chem. Phys. Lett. 552, 97 (2012)ADSCrossRefGoogle Scholar
  68. 68.
    Z. Spitalsky, M. Danko, J. Mosnacek, Curr. Org. Chem. 15, 1133 (2011)CrossRefGoogle Scholar
  69. 69.
    L. Jiang, Z. Fan, Nanoscale 6, 1922 (2014)ADSCrossRefGoogle Scholar
  70. 70.
    G. Lei, C. Liu, H. Xie, F. Song, Chem. Phys. Lett. 599, 127 (2014)ADSCrossRefGoogle Scholar
  71. 71.
    D. Li, W. Hu, J. Zhang, H. Shi, Q. Chen, T. Sun, L. Liang, Q. Wang, J. Phys. Chem. C 119, 25559 (2015)CrossRefGoogle Scholar
  72. 72.
    S. Blankenburg, M. Bieri, R. Fasel, K. Müllen, C.A. Pignedoli, D. Passerone, Small 6, 2266 (2010)CrossRefGoogle Scholar
  73. 73.
    H. Liu, S. Dai, D.-E. Jiang, Nanoscale 5, 9984 (2013)ADSCrossRefGoogle Scholar
  74. 74.
    H. Liu, S. Dai, D.-E. Jiang, Solid State Commun. 175, 101 (2013)ADSCrossRefGoogle Scholar
  75. 75.
    H. Du, J. Li, J. Zhang, G. Su, X. Li, Y. Zhao, J. Phys. Chem. C 115, 23261 (2011)CrossRefGoogle Scholar
  76. 76.
    S.M. Fatemi, H. Sepehrian, M. Arabieh, Eur. Phys. J. Plus 131, 1 (2016)CrossRefGoogle Scholar
  77. 77.
    S.M. Fatemi, H. Sepehrian, M. Arabieh, J. Adv. Phys. 6, 10 (2017)CrossRefGoogle Scholar
  78. 78.
    D.-E. Jiang, V.R. Cooper, S. Dai, Nano Lett. 9, 4019 (2009)ADSCrossRefGoogle Scholar
  79. 79.
    A.W. Hauser, P. Schwerdtfeger, J. Phys. Chem. Lett. 3, 209 (2012)CrossRefGoogle Scholar
  80. 80.
    R.P. Wesołowski, A.P. Terzyk, Phys. Chem. Chem. Phys. 13, 17027 (2011)CrossRefGoogle Scholar
  81. 81.
    M. Arabieh, S. Mahmood Fatemi, H. Sepehrian, Chem. Prod. Process Model. 11, 3 (2016)Google Scholar
  82. 82.
    K. Nieszporek, M. Drach, Phys. Chem. Chem. Phys. 17, 1018 (2015)CrossRefGoogle Scholar
  83. 83.
    J. Xu, P. Sang, W. Xing, Z. Shi, L. Zhao, W. Guo, Z. Yan, Nanoscale Res. Lett. 10, 492 (2015)ADSCrossRefGoogle Scholar
  84. 84.
    C. Sun, B. Wen, B. Bai, Chem. Eng. Sci. 138, 616 (2015)CrossRefGoogle Scholar
  85. 85.
    T. Wu, Q. Xue, C. Ling, M. Shan, Z. Liu, Y. Tao, X. Li, J. Phys. Chem. C 118, 7369 (2014)CrossRefGoogle Scholar
  86. 86.
    Q. Xue, M. Shan, Y. Tao, Z. Liu, C. Ling, Y. Du, Chin. Sci. Bull. 59, 3919 (2014)CrossRefGoogle Scholar
  87. 87.
    S.M. Fatemi, M. Arabieh, H. Sepehrian, Carbon Lett. 16, 183 (2015)CrossRefGoogle Scholar
  88. 88.
    J. Azamat, A. Khataee, S.W. Joo, Chem. Eng. Sci. 127, 285 (2015)CrossRefGoogle Scholar
  89. 89.
    M. Hankel, Y. Jiao, A. Du, S.K. Gray, S.C. Smith, J. Phys. Chem. C 116, 6672 (2012)CrossRefGoogle Scholar
  90. 90.
    L.-C. Lin, J.C. Grossman, Nat. Commun. 6 (2015)Google Scholar
  91. 91.
    D. Kim, D.W. Kim, H.-K. Lim, J. Jeon, H. Kim, H.-T. Jung, H. Lee, J. Phys. Chem. C 118, 11142 (2014)CrossRefGoogle Scholar
  92. 92.
    W. Li, X. Zheng, Z. Dong, C. Li, W. Wang, Y. Yan, J. Zhang, J. Phys. Chem. C 120, 26061 (2016)CrossRefGoogle Scholar
  93. 93.
    L. Wang, J. Zhao, L. Wang, T. Yan, Y.-Y. Sun, S.B. Zhang, Phys. Chem. Chem. Phys. 13, 21126 (2011)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Physical ChemistrySchool of Chemistry, College of Science, University of TehranTehranIran
  2. 2.Faculty of Chemistry, Tehran North Branch, Islamic Azad UniversityTehranIran
  3. 3.Department of ChemistryDezful Branch, Islamic Azad UniversityDezfulIran
  4. 4.Physics Department, Faculty of Science, Payame Noor UniversityTehranIran
  5. 5.Young Researchers and Elite Club, Quchan Branch, Islamic Azad UniversityQuchanIran

Personalised recommendations