Correlated electron-nuclear dissociation dynamics: classical versus quantum motion

Regular Article
Part of the following topical collections:
  1. Topical Issue: Dynamics of Molecular Systems (MOLEC 2016)


We investigate the coupled electron-nuclear dynamics in a model system which undergoes dissociation. In choosing different initial conditions, the cases of adiabatic and non-adiabatic dissociation are realized. We treat the coupled electronic and nuclear motion in the complete configuration space so that classically, no surface hopping procedures have to be incorporated in the case that more than a single adiabatic electronic state is populated during the fragmentation. Due to the anharmonic interaction potential, it is expected that classical mechanics substantially deviate from quantum mechanics. However, we provide examples where the densities and fragmentation yields obtained from the two treatments are in astonishingly strong agreement in the case that one starts in the electronic ground state initially. As expected, larger deviations are found if one starts in electronically excited states where trajectories are sampled from the more spatially extended electronic wave function. In that case, higher initial energies are accessed, and the motion proceeds in regions with increasing degree of anharmonicity.

Graphical abstract


  1. 1.
    R. Schinke, Photodissociation Dynamics (Cambridge University Press, Cambridge, 1993)Google Scholar
  2. 2.
    N.E. Henriksen, Adv. Chem. Phys. 91, 433 (1995)Google Scholar
  3. 3.
    G. Herzberg, Spectra of Diatomic Molecules (van Nostrand Reinhold, New York, 1950)Google Scholar
  4. 4.
    J. Tellinguisen, in: Photodissociation and Photoionization, edited by K.P. Lawley, 3rd edn. (Wiley, New York, 1985)Google Scholar
  5. 5.
    E.J. Heller, Acc. Chem. Res. 14, 368 (1981)CrossRefGoogle Scholar
  6. 6.
    D.J. Tannor, Introduction to Quantum Mechanics: A Time-dependent Perspective (University Science Books, Sausalito, 2007)Google Scholar
  7. 7.
    E.J. Heller, J. Chem. Phys. 65, 1289 (1976)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    S. Goursaud, M. Sizun, F. Fiquet-Fayard, J. Chem. Phys. 65, 5453 (1976)ADSCrossRefGoogle Scholar
  9. 9.
    E.J. Heller, J. Chem. Phys. 68, 2066 (1978)ADSCrossRefGoogle Scholar
  10. 10.
    R. Schinke, J. Chem. Phys. 85, 5049 (1986)ADSCrossRefGoogle Scholar
  11. 11.
    N.E. Henriksen, V. Engel, R. Schinke, J. Chem. Phys. 86, 6862 (1987)ADSCrossRefGoogle Scholar
  12. 12.
    R.K. Preston, J.C. Tully, J. Chem. Phys. 54, 4297 (1971)ADSCrossRefGoogle Scholar
  13. 13.
    V. Bonacić-Koutecký, R. Mitrić, Chem. Rev. 105, 11 (2005)CrossRefGoogle Scholar
  14. 14.
    L. Stella, M. Meister, A.J. Fisher, A.P. Horsfield, J. Chem. Phys. 127, 214104 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    L. Stella, R.P. Miranda, A.P. Horsfield, A.J. Fisher, J. Chem. Phys. 134, 194105 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    R. Mitric, J. Petersen, V. Bonacic-Koutecky, Phys. Rev. A 79, 053416 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    M. Richter, P. Marquetand, J. González-Vázquez, I. Sola, L. González, J. Chem. Theor. Comput. 7, 1253 (2011)CrossRefGoogle Scholar
  18. 18.
    S. Shin, H. Metiu, J. Chem. Phys. 102, 9285 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    S. Shin, H. Metiu, J. Phys. Chem. 100, 7867 (1996)CrossRefGoogle Scholar
  20. 20.
    M. Erdmann, P. Marquetand, V. Engel, J. Chem. Phys. 119, 672 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    M. Falge, V. Engel, S. Gräfe, J. Chem. Phys. 134, 184307 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    M. Falge, V. Engel, S. Gräfe, J. Phys. Chem. Lett. 3, 2617 (2012)CrossRefGoogle Scholar
  23. 23.
    A. Abedi, F. Agostini, Y. Suzuki, E.K.U. Gross, Phys. Rev. Lett. 110, 263001 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    F. Agostini, A. Abedi, Y. Suzuki, S. Min, N.T. Maitra, E. Gross, J. Chem. Phys. 142, 084303 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    S.K. Min, A. Abedi, K. Kim, E. Gross, Phys. Rev. Lett. 113, 263004 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    M. Erdmann, E.K.U. Gross, V. Engel, J. Chem. Phys. 121, 9666 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    M. Falge, P. Vindel-Zandbergen, V. Engel, M. Lein, B.Y. Chang, I.R. Sola, J. Phys. B 47, 124027 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    M. Erdmann, S. Baumann, S. Gräfe, V. Engel, Eur. Phys. J. D 30, 327 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    K. Hader, V. Engel, J. Chem. Phys. 136, 104306 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    J. Albert, D. Kaiser, V. Engel, J. Chem. Phys. 144, 171103 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    R. Kosloff, H. Tal-Ezer, Chem. Phys. Lett. 127, 223 (1986)ADSCrossRefGoogle Scholar
  32. 32.
    M.D. Feit, J.A. Fleck, A. Steiger, J. Comput. Phys. 47, 412 (1982)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    N.E. Henriksen, V. Engel, Int. Rev. Phys. Chem. 20, 93 (2001)CrossRefGoogle Scholar
  34. 34.
    V. Engel, H. Metiu, R. Almeida, R.A. Marcus, A.H. Zewail, Chem. Phys. Lett. 152, 1 (1988)ADSCrossRefGoogle Scholar
  35. 35.
    L. Verlet, Phys. Rev. 159, 98 (1967)ADSCrossRefGoogle Scholar
  36. 36.
    M.P. Allen, D.J. Tildesley, Computer Simulations of Liquids (Oxford University Press, Oxford, 1989)Google Scholar
  37. 37.
    W.P. Schleich, Quantum Optics in Phase Space (WileyVCH, Berlin, 2001)Google Scholar
  38. 38.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran, 2nd edn. (Cambridge University Press, Cambridge, 1992)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Universität Würzburg, Institut für Physikalische und Theoretische ChemieWürzburgGermany

Personalised recommendations