Fragmentation of methane molecules by proton and antiproton impact

Regular Article
Part of the following topical collections:
  1. Topical Issue: Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces

Abstract

Proton and antiproton collisions with methane molecules have been investigated in the impact energy range of 20–5000 keV. To address the multi-centre nature of the system, a spectral representation of the molecular Hamiltonian is used in conjunction with the independent electron model. The initially populated molecular orbitals are expanded in terms of a single-centred basis and the two-centre basis generator method is employed to solve the time-dependent single-electron Schrödinger equations. The single-electron solutions are complemented with a dynamical decay-route fragmentation model based on fixed branching ratios from [H. Luna, E.G. Cavalcanti, J. Nickles, G.M. Sigaud, E.C. Montenegro, J. Phys. B 36, 4717 (2003)] to obtain the cross sections for the production of CH4 +, CH3 +, CH2 +, CH+ and C+ fragments. In the case of proton impact the calculations underestimate the measurements for CH4 + and CH3 +, while good agreement is observed for the other fragments. A better consistency is found for antiprotons, particularly, for the production of CH4 +, CH2 + and CH+.

Graphical abstract

References

  1. 1.
    T.E. Cravens, C.J. Lindgren, S.A. Levina, Planet. Space Sci. 46, 1193 (1998) ADSCrossRefGoogle Scholar
  2. 2.
    R. Browning, H.B. Gilbody, J. Phys. B 1, 1149 (1968) ADSCrossRefGoogle Scholar
  3. 3.
    I. Ben-Itzhak, K.D. Carnes, S.G. Ginther, D.T. Johnson, P.J. Norris, O.L. Weaver, Phys. Rev. A 47, 3748 (1993) ADSCrossRefGoogle Scholar
  4. 4.
    I. Ben-Itzhak, K.D. Carnes, D.T. Johnson, P.J. Norris, O.L. Weaver, Phys. Rev. A 49, 881 (1994) ADSCrossRefGoogle Scholar
  5. 5.
    H. Luna, E.G. Cavalcanti, J. Nickles, G.M. Sigaud, E.C. Montenegro, J. Phys. B 36, 4717 (2003) ADSCrossRefGoogle Scholar
  6. 6.
    M.E. Rudd, R.D. DuBois, L.H. Toburen, C.A. Ratcliffe, T.V. Goffe, Phys. Rev. A 28, 3244 (1983) ADSCrossRefGoogle Scholar
  7. 7.
    H. Knudsen, U. Mikkelsen, K. Paludan, K. Kiresbom, S.P. Möller, E. Uggerhöj, J. Slevin, M. Charlton, E. Morenzoni, J. Phys. B 28, 3569 (1995) ADSCrossRefGoogle Scholar
  8. 8.
    T. Cechan, C.R. Vidal, J. Phys. B 31, 895 (1998) ADSCrossRefGoogle Scholar
  9. 9.
    C. Backx, M.J. Van der Wiel, J. Phys. B 8, 3020 (1975) ADSCrossRefGoogle Scholar
  10. 10.
    C.A. Tachino, J.M. Monti, O.A. Fojón, C. Champion, R.D. Rivarola, J. Phys.: Conf. Ser. 583, 012020 (2015) Google Scholar
  11. 11.
    C.C. Montanari, J.E. Miraglia, J. Phys. B 47, 12 (2014) Google Scholar
  12. 12.
    C.C. Montanari, J.E. Miraglia, in Theory of Heavy Ion Collision Physics in Hadron Therapy, edited by D. Belkić (Elsevier, Amsterdam, 2013), Vol. 65 of Advances in Quantum Chemistry, p. 165 Google Scholar
  13. 13.
    L. Gulyás, I. Tóth, L. Nagy, J. Phys. B 46, 075201 (2013) ADSCrossRefGoogle Scholar
  14. 14.
    M. Murakami, T. Kirchner, M. Horbatsch, H.J. Lüdde, Phys. Rev. A 85, 052704 (2012) ADSCrossRefGoogle Scholar
  15. 15.
    A. Salehzadeh, Master’s thesis, York University (2014) Google Scholar
  16. 16.
    A. Salehzadeh, T. Kirchner, Phys. Procedia 66, 16 (2015) ADSCrossRefGoogle Scholar
  17. 17.
    R.M. Pitzer, J. Chem. Phys 46, 4871 (1967) ADSCrossRefGoogle Scholar
  18. 18.
    E. Engel, R.M. Dreizler, Density Functional Theory: An Advanced Course, Theoretical and Mathematical Physics (Springer, Berlin, Heidelberg, 2011) Google Scholar
  19. 19.
    J.D. Talman, W.F. Shadwick, Phys. Rev. A 14, 36 (1976) ADSCrossRefGoogle Scholar
  20. 20.
    K. Aashamar, T.M. Luke, J.D. Talman, At. Data Nucl. Data Tables 22, 443 (1978) ADSCrossRefGoogle Scholar
  21. 21.
    M. Zapukhlyak, T. Kirchner, H.J. Lüdde, S. Knoop, R. Morgenstern, R. Hoekstra, J. Phys. B 38, 2353 (2005) ADSCrossRefGoogle Scholar
  22. 22.
    T. Kirchner, H.J. Lüdde, M. Horbatsch, Recent. Res. Dev. Phys. 5, 433 (2004) Google Scholar
  23. 23.
    M.B. Robin, Higher Excited States of Polyatomic Molecules (Springer, 2011), Vol. 3 Google Scholar
  24. 24.
    M.E. Rudd, Y.K. Kim, D.H. Madison, J.W. Gallagher, Rev. Mod. Phys. 57, 965 (1985) ADSCrossRefGoogle Scholar
  25. 25.
    J. Desesquelles, G.D. Cao, M.C. Dufay, C. R. Acad. Sci. Ser. B 262, 1329 (1966) Google Scholar
  26. 26.
    J.G. Collins, P. Kebarle, J. Chem. Phys. 46, 1082 (1967) ADSCrossRefGoogle Scholar
  27. 27.
    R.J. McNeal, J. Chem. Phys. 53, 4308 (1970) ADSCrossRefGoogle Scholar
  28. 28.
    D.J. Lynch, L.H. Toburen, W.E. Wilson, J. Chem. Phys. 64, 2616 (1976) ADSCrossRefGoogle Scholar
  29. 29.
    R. Mach, H. Drost, H. Behlke, H.J. Spangenberg, Ann. Phys. 34, 175 (1977) CrossRefGoogle Scholar
  30. 30.
    T. Kirchner, H. Knudsen, J. Phys. B 44, 49 (2011) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Physics and AstronomyYork UniversityTorontoCanada

Personalised recommendations