Skip to main content
Log in

Fragmentation of methane molecules by proton and antiproton impact

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Proton and antiproton collisions with methane molecules have been investigated in the impact energy range of 20–5000 keV. To address the multi-centre nature of the system, a spectral representation of the molecular Hamiltonian is used in conjunction with the independent electron model. The initially populated molecular orbitals are expanded in terms of a single-centred basis and the two-centre basis generator method is employed to solve the time-dependent single-electron Schrödinger equations. The single-electron solutions are complemented with a dynamical decay-route fragmentation model based on fixed branching ratios from [H. Luna, E.G. Cavalcanti, J. Nickles, G.M. Sigaud, E.C. Montenegro, J. Phys. B 36, 4717 (2003)] to obtain the cross sections for the production of CH4 +, CH3 +, CH2 +, CH+ and C+ fragments. In the case of proton impact the calculations underestimate the measurements for CH4 + and CH3 +, while good agreement is observed for the other fragments. A better consistency is found for antiprotons, particularly, for the production of CH4 +, CH2 + and CH+.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.E. Cravens, C.J. Lindgren, S.A. Levina, Planet. Space Sci. 46, 1193 (1998)

    Article  ADS  Google Scholar 

  2. R. Browning, H.B. Gilbody, J. Phys. B 1, 1149 (1968)

    Article  ADS  Google Scholar 

  3. I. Ben-Itzhak, K.D. Carnes, S.G. Ginther, D.T. Johnson, P.J. Norris, O.L. Weaver, Phys. Rev. A 47, 3748 (1993)

    Article  ADS  Google Scholar 

  4. I. Ben-Itzhak, K.D. Carnes, D.T. Johnson, P.J. Norris, O.L. Weaver, Phys. Rev. A 49, 881 (1994)

    Article  ADS  Google Scholar 

  5. H. Luna, E.G. Cavalcanti, J. Nickles, G.M. Sigaud, E.C. Montenegro, J. Phys. B 36, 4717 (2003)

    Article  ADS  Google Scholar 

  6. M.E. Rudd, R.D. DuBois, L.H. Toburen, C.A. Ratcliffe, T.V. Goffe, Phys. Rev. A 28, 3244 (1983)

    Article  ADS  Google Scholar 

  7. H. Knudsen, U. Mikkelsen, K. Paludan, K. Kiresbom, S.P. Möller, E. Uggerhöj, J. Slevin, M. Charlton, E. Morenzoni, J. Phys. B 28, 3569 (1995)

    Article  ADS  Google Scholar 

  8. T. Cechan, C.R. Vidal, J. Phys. B 31, 895 (1998)

    Article  ADS  Google Scholar 

  9. C. Backx, M.J. Van der Wiel, J. Phys. B 8, 3020 (1975)

    Article  ADS  Google Scholar 

  10. C.A. Tachino, J.M. Monti, O.A. Fojón, C. Champion, R.D. Rivarola, J. Phys.: Conf. Ser. 583, 012020 (2015)

    Google Scholar 

  11. C.C. Montanari, J.E. Miraglia, J. Phys. B 47, 12 (2014)

    Google Scholar 

  12. C.C. Montanari, J.E. Miraglia, in Theory of Heavy Ion Collision Physics in Hadron Therapy, edited by D. Belkić (Elsevier, Amsterdam, 2013), Vol. 65 of Advances in Quantum Chemistry, p. 165

  13. L. Gulyás, I. Tóth, L. Nagy, J. Phys. B 46, 075201 (2013)

    Article  ADS  Google Scholar 

  14. M. Murakami, T. Kirchner, M. Horbatsch, H.J. Lüdde, Phys. Rev. A 85, 052704 (2012)

    Article  ADS  Google Scholar 

  15. A. Salehzadeh, Master’s thesis, York University (2014)

  16. A. Salehzadeh, T. Kirchner, Phys. Procedia 66, 16 (2015)

    Article  ADS  Google Scholar 

  17. R.M. Pitzer, J. Chem. Phys 46, 4871 (1967)

    Article  ADS  Google Scholar 

  18. E. Engel, R.M. Dreizler, Density Functional Theory: An Advanced Course, Theoretical and Mathematical Physics (Springer, Berlin, Heidelberg, 2011)

  19. J.D. Talman, W.F. Shadwick, Phys. Rev. A 14, 36 (1976)

    Article  ADS  Google Scholar 

  20. K. Aashamar, T.M. Luke, J.D. Talman, At. Data Nucl. Data Tables 22, 443 (1978)

    Article  ADS  Google Scholar 

  21. M. Zapukhlyak, T. Kirchner, H.J. Lüdde, S. Knoop, R. Morgenstern, R. Hoekstra, J. Phys. B 38, 2353 (2005)

    Article  ADS  Google Scholar 

  22. T. Kirchner, H.J. Lüdde, M. Horbatsch, Recent. Res. Dev. Phys. 5, 433 (2004)

    Google Scholar 

  23. M.B. Robin, Higher Excited States of Polyatomic Molecules (Springer, 2011), Vol. 3

  24. M.E. Rudd, Y.K. Kim, D.H. Madison, J.W. Gallagher, Rev. Mod. Phys. 57, 965 (1985)

    Article  ADS  Google Scholar 

  25. J. Desesquelles, G.D. Cao, M.C. Dufay, C. R. Acad. Sci. Ser. B 262, 1329 (1966)

    Google Scholar 

  26. J.G. Collins, P. Kebarle, J. Chem. Phys. 46, 1082 (1967)

    Article  ADS  Google Scholar 

  27. R.J. McNeal, J. Chem. Phys. 53, 4308 (1970)

    Article  ADS  Google Scholar 

  28. D.J. Lynch, L.H. Toburen, W.E. Wilson, J. Chem. Phys. 64, 2616 (1976)

    Article  ADS  Google Scholar 

  29. R. Mach, H. Drost, H. Behlke, H.J. Spangenberg, Ann. Phys. 34, 175 (1977)

    Article  Google Scholar 

  30. T. Kirchner, H. Knudsen, J. Phys. B 44, 49 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Kirchner.

Additional information

Contribution to the Topical Issue “Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces”, edited by A.N. Grum-Grzhimailo, E.V. Gryzlova, Yu V. Popov, and A.V. Solov’yov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehzadeh, A., Kirchner, T. Fragmentation of methane molecules by proton and antiproton impact. Eur. Phys. J. D 71, 66 (2017). https://doi.org/10.1140/epjd/e2017-70714-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-70714-9

Navigation