Electron-induced double ionization of oriented methane molecules

  • Dahbia Oubaziz
  • Zakia Aitelhadjali
  • Michele Arcangelo Quinto
  • Rachida Boulifa
  • Christophe Champion
Regular Article
Part of the following topical collections:
  1. Topical Issue: Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces

Abstract

We report here a theoretical study of the target orientation effect on the total cross sections for the double ionization of methane molecules impacted by electrons. The theoretical description is performed within the first Born approximation. The initial state of the collisional system is composed of an electron projectile modeled by a plane wave and a molecular target described by a one-center wave function while the final state is constituted by a scattered electron described by a plane wave and two ejected electrons both represented by a Coulomb wave and coupled with a Gamow factor. Secondary electron energetic distributions and total cross sections are reported for particular target configurations. Strong orientation effects on the double-ionization process are pointed out in particular when scrutinized orbital by orbital.

Graphical abstract

References

  1. 1.
    E.W. McDaniel, J.B.A. Mitchell, M.E. Rudd, Atomic Collision (Wiley, New York, 1993)Google Scholar
  2. 2.
    C.S. Enos, A.R. Lee, and A.G. Brenton, Int. J. Mass Spectrom. Ion Process. 104, 137 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    K. Mitsuke, T. Takami, K. Ohno, J. Chem. Phys. 91, 1618 (1989)ADSCrossRefGoogle Scholar
  4. 4.
    D.H. Katayama, R.E. Huffman, C.L. O’Bryan, J. Chem. Phys. 59, 4309 (1973)ADSCrossRefGoogle Scholar
  5. 5.
    K. Tachibana, M. Nishida, H. Harima, Y. Urano, J. Phys. D: Appl. Phys. 17, 1727 (1984)ADSCrossRefGoogle Scholar
  6. 6.
    R. Zellner, G. Weibring, Z. Phys. Chem. 161, 167 (1989)CrossRefGoogle Scholar
  7. 7.
    A.O. Nier, Int. J. Mass Spectrom. Ion Phys. 66, 55 (1985)ADSCrossRefGoogle Scholar
  8. 8.
    S.P. Khare, M.K. Sharma, S. Tomar, J. Phys. B: At. Mol. Opt. Phys. 32, 3147 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    O. Chuluunbaatar, B. Joulakian, I.V. Puzynin, K.H. Tsookhuu, S.I. Vinitsky, J. Phys. B 41, 015204 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    A. Mansouri, C. Dal Cappello, S. Houamer, I. Charpentier, A. Lahmam-Bennani, J. Phys. B: At. Mol. Opt. Phys. 37, 1203 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    A. Lahmam-Bennani, A. Duguet, S. Roussin, J. Phys. B 35, L59 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    C. Li, A. Lahmam-Bennani, E.M. Staicu Casagrande, C. Dal Cappello, J. Phys. B: At. Mol. Opt. Phys. 44, 115201 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    E.M. Staicu Casagrande, C. Li, A. Lahmam-Bennani, C. Dal Cappello, M. Schulz, M. Ciappina, J. Phys. B: At. Mol. Opt. Phys. 44, 055201 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    E.M. Staicu Casagrande, C. Li, A. Lahmam-Bennani, C. Dal Cappello, J. Phys. B: At. Mol. Opt. Phys. 47, 115203 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Th. Weber, A. Czasch, O. Jagutzki, A. Müller, V. Mergel, A. Kheifets, J. Feagin, E. Rotenberg, G. Meigs, M.H. Prior, S. Daveau, A.L. Landers, C.L. Cocke, T. Osipov, H. Schmidt- Böcking, R. Dörner, Phys. Rev. Lett. 92, 163001 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    M. Gisselbrecht, M. Lavollée, A. Huetz, P. Bolognesi, L. Avaldi, D.P. Seccombe, T.J. Reddish, Phys. Rev. Lett. 96, 153002 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    C. Champion, D. Oubaziz, H. Aouchiche, Yu.V. Popov, C. Dal Cappello, Phys. Rev. A 81, 032704 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    D. Oubaziz, H. Aouchiche, C. Champion, Phys. Rev. A 83, 012708 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Z. Aitelhadjali, S. Kessal, M.A. Quinto, D. Oubaziz C. Champion, Int. J. Mass Spectrom. 403, 53 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    D. Oubaziz, C. Champion, H. Aouchiche, Phys. Rev. A 88, 042709 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    I.A. Ivanov, A.S. Kheifets, Phys. Rev. A 85, 013406 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    W. Vanroose, F. Martin, T.N. Rescigno, C.W. McCurdy, Phys. Rev. A 70, 050703 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    R. Moccia, J. Chem. Phys. 40, 2164 (1964)ADSCrossRefGoogle Scholar
  24. 24.
    P. Defrance, T.M. Kereselidze, I.L. Noselidze, M.F. Tzulukidze, J. Phys. B: At. Mol. Opt. Phys. 34, 4957 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    P. Defrance, J.J. Jureta, T. Kereselidze, J. Lecointre, Z.S. Machavariani, J. Phys. B: At. Mol. Opt. Phys. 42, 025202 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    E. Bahati, H. Cherkani-Hassani, P. Defrance, J.J. Jureta, T. Kereselidze, Z. Machavariani, I. Noselidze, J. Phys. B: At. Mol. Opt. Phys. 38, 1261 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    W.J. Griffiths, S. Svensson, A. Naves de Brito, N. Correia, M.L. Langfords, F.M. Harris, Rapid Commun. Mass Spectrom. 6, 438 (1992)CrossRefGoogle Scholar
  28. 28.
    C. Champion, R.D. Rivarola, Phys. Rev. A 82, 042704 (2010)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Dahbia Oubaziz
    • 1
  • Zakia Aitelhadjali
    • 1
  • Michele Arcangelo Quinto
    • 2
  • Rachida Boulifa
    • 1
  • Christophe Champion
    • 3
  1. 1.Laboratoire de Génie Electrique, LGE, Université Mouloud Mammeri de Tizi-OuzouTizi-OuzouAlgeria
  2. 2.Instituto de Física Rosario, CONICET, Universidad Nacional de RosarioEKF RosarioArgentina
  3. 3.Centre d’Etudes Nucléaires de Bordeaux Gradignan, CENBG, CNRS/IN2P3, Université de BordeauxGradignanFrance

Personalised recommendations