Skip to main content
Log in

Dynamical matrix for arbitrary quadratic fermionic bath Hamiltonians and non-Markovian dynamics of one and two qubits in an Ising model environment

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We obtain the analytical expression for the Kraus decomposition of the quantum map of an environment modeled by an arbitrary quadratic fermionic Hamiltonian acting on one or two qubits, and derive simple functions to check the non-positivity of the intermediate map. These functions correspond to two different sufficient criteria for non-Markovianity. In the particular case of an environment represented by the Ising Hamiltonian, we discuss the two sources of non-Markovianity in the model, one due to the finite size of the lattice, and another due to the kind of interactions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, New York, 2000)

  2. B. Bylicka, D. Chruściński, S. Maniscalco, Sci. Rep. 4, 5720 (2014)

    Article  Google Scholar 

  3. P. Haikka, J.D. Cresser, S. Maniscalco, Phys. Rev. A 83, 012112 (2011)

    Article  ADS  Google Scholar 

  4. A. Rivas, S.F. Huelga, M.B. Plenio, Rep. Prog. Phys. 77, 094001 (2014)

    Article  ADS  Google Scholar 

  5. H.P. Breuer, E.M. Laine, J. Piilo, B. Vacchini, Rev. Mod. Phys. 88, 021002 (2016)

    Article  ADS  Google Scholar 

  6. E.M. Laine, J. Piilo, H.P. Breuer, Phys. Rev. A 81, 062115 (2010)

    Article  ADS  Google Scholar 

  7. D. Chruściński, A. Kossakowski, Eur. Phys. J. D 68, 7 (2014)

    Article  ADS  Google Scholar 

  8. P. Haikka, J. Goold, S. McEndoo, F. Plastina,, S. Maniscalco, Phys. Rev. A 85, 060101(R) (2012)

    Article  ADS  Google Scholar 

  9. P. Haikka, S. Maniscalco, Open Syst. Inf. Dyn. 21, 1440005 (2014)

    Article  MathSciNet  Google Scholar 

  10. X.M. Lu, X. Wang, C.P. Sun, Phys. Rev. A 82, 042103 (2010)

    Article  ADS  Google Scholar 

  11. S. Luo, S. Fu, H. Song, Phys. Rev. A 86, 044101 (2012)

    Article  ADS  Google Scholar 

  12. A. Rivas, S.F. Huelga, M.B. Plenio, Phys. Rev. Lett. 105, 050403 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  13. F.F. Fanchini, G. Karpat, B.Çakmak, L.K. Castelano, G.H. Aguilar, O. Jiménez Farías, S.P. Walbom, P.H. Souto Ribeiro, M.C. de Oliveira, Phys. Rev. Lett. 112, 210402 (2014)

    Article  ADS  Google Scholar 

  14. F.F. Fanchini, G. Karpat, L.K. Castelano, D.Z. Rossatto, Phys. Rev. A 88, 012105 (2013)

    Article  ADS  Google Scholar 

  15. C.A. Rodríguez-Rosario, E.C.G. Sudarshan, Int. J. Quantum Inform. 09, 1617 (2011)

    Article  Google Scholar 

  16. A.R. Usha Devi, A.K. Rajagopal, S. Shenoy, R.W. Rendell, J. Quantum Inf. Sci. 2, 47 (2012)

    Article  Google Scholar 

  17. S. Sachdev, Quantum Phase Transitions, 2nd edn. (Cambridge University Press, Cambridge, 2011)

  18. F. Franchini, Notes on Bethe Ansatz Techniques, SISSA, the International School for Advanced Studies in Trieste, Italy (2011), http://people.sissa.it/%7Effranchi/BAnotes.pdf

  19. I. Bengtsson, K. Zyczkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge University Press, Cambridge, 2006)

  20. F.M. Cucchietti, D.A.R. Dalvit, J.P. Paz, W.H. Zurek, Phys. Rev. Lett. 91, 210403 (2003)

    Article  ADS  Google Scholar 

  21. A. Jamiolkowski, Rep. Math. Phys. 3, 275 (1972)

    Article  ADS  Google Scholar 

  22. H.T. Quan, Z. Song, X.F. Liu, P. Zanardi, C.P. Sun, Phys. Rev. Lett. 96, 140604 (2006)

    Article  ADS  Google Scholar 

  23. Á. Rivas, S.F. Huelga, M.B. Plenio, Phys. Rev. Lett. 105, 050403 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  24. Shunlong Luo, Shuangshuang Fu, Hongting Song, Phys. Rev. A 86, 044101 (2012)

    Article  ADS  Google Scholar 

  25. T. Debarba, F.F. Fanchini, http://arxiv.org/abs/1612.04625 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Iemini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iemini, F., da Silva Souza, L., Debarba, T. et al. Dynamical matrix for arbitrary quadratic fermionic bath Hamiltonians and non-Markovian dynamics of one and two qubits in an Ising model environment. Eur. Phys. J. D 71, 119 (2017). https://doi.org/10.1140/epjd/e2017-70671-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-70671-3

Keywords

Navigation