Skip to main content

C5H9N isomers: pointers to possible branched chain interstellar molecules

Abstract

The astronomical observation of isopropyl cyanide further stresses the link between the chemical composition of the interstellar medium (ISM) and molecular composition of the meteorites in which there is a dominance of branched chain amino acids as compared to the straight. However, observations of more branched chain molecules in ISM will firmly establish this link. In the light of this, we have considered C5H9N isomeric group in which the next higher member of the alkyl cyanide and other branched chain isomers belong. High-level quantum chemical calculations have been employed in estimating accurate energies of these isomers. From the results, the only isomer of the group that has been astronomically searched, n-butyl cyanide is not the most stable isomer and therefore, which might explain why its search could only yield upper limits of its column density without a successful detection. Rather, the two most stable isomers of the group are the branched chain isomers; tert-butylnitrile and isobutyl cyanide. Based on the rotational constants of these isomers, it is found that the expected intensity of tert-butylnitrile is the maximum among this isomeric group. Thus, this is proposed as the most probable candidate for astronomical observation. A simple LTE (local thermodynamic equilibrium) modelling has also been carried out to check the possibility of detecting tert-butyl cyanide in the millimetre-wave region.

Graphical abstract

This is a preview of subscription content, access via your institution.

References

  1. 1.

    E.E. Etim, E. Arunan, Planex Newsletter 5, 16 (2015)

    Google Scholar 

  2. 2.

    E.E. Etim, P. Gorai, Das. Ankan, S.K. Chakrabarti, E. Arunan, ApJ 832, 144 (2016)

    ADS  Article  Google Scholar 

  3. 3.

    T. Hasegawa, E. Herbst, C.M. Leung, Astrophys. J. Supp. Ser. 82, 167 (1992)

    ADS  Article  Google Scholar 

  4. 4.

    A. Das, K. Acharyya, S.K. Chakrabarti, Mon. Not. R. Astron. Soc. 409, 789 (2010)

    ADS  Article  Google Scholar 

  5. 5.

    A. Das, S.K. Chakrabarti, Mon. Not. R. Astron. Soc. 418, 545 (2011)

    ADS  Article  Google Scholar 

  6. 6.

    A. Das, L. Majumdar, S.K. Chakrabarti, D. Sahu, New Astronomy 35, 53 (2015)

    ADS  Article  Google Scholar 

  7. 7.

    A.C.A. Boogert, P. Ehrenfreund, ASPC 309, 547 (2004)

    ADS  Google Scholar 

  8. 8.

    E.L. Gibb, D.C.B. Whittet, A.C.A. Boogert, A.G.G.M. Tielens, ApJS 151, 35 (2004)

    ADS  Article  Google Scholar 

  9. 9.

    S. Ioppolo, H.M. Cuppen, C. Romanzin, E.F. Van Dishoeck, H. Linnartz, APJ 686, 1474 (2008)

    ADS  Article  Google Scholar 

  10. 10.

    K.I. Oberg, R.T. Garrord, E.F. Van Dishoeck, H. Linnartz, A&A 504, 891 (2009)

    ADS  Article  Google Scholar 

  11. 11.

    A. Belloche, R.T. Garrod, H.S.P. Müller, K.M. Menten, Sci. 345, 158 (2014)

    Article  Google Scholar 

  12. 12.

    F. Vazart, D. Calderini, C. Puzzarini, D. Skouteris, V. Barone, J. Chem. Theory Comput. 12, 5385 (2016)

    Article  Google Scholar 

  13. 13.

    F. Vazart, D. Calderini, D. Skouteris, C. Latouche, V. Barone, J. Chem. Theory Comput. 11, 1165 (2015)

    Article  Google Scholar 

  14. 14.

    F. Vazart, C. Latouche, D. Skouteris, N. Balucani, V. Barone, ApJ 810, 111 (2015)

    ADS  Article  Google Scholar 

  15. 15.

    D. Skouteris, N. Balucani, N. Faginas-Lago, S. Falcinelli, M. Rosi, A&A 584, A76 (2015)

    ADS  Article  Google Scholar 

  16. 16.

    A. Belloche, R.T. Garrod, H.S.P. Müller, K.M. Menten, C. Comito, P. Schilke, A&A 499, 215 (2009)

    ADS  Article  Google Scholar 

  17. 17.

    H.S.P. Müller, A. Coutens, A. Walters, J.U. Grabow, S. Schlemmer, J. Mol. Spectrosc. 267, 100 (2011)

    ADS  Article  Google Scholar 

  18. 18.

    H.K. Hall Jr., J.H. Baldt, J. Am. Chem. Soc. 93, 140 (1971)

    Article  Google Scholar 

  19. 19.

    NIST: http://webbook.nist.gov/chemistry/ Accessed in May (2016)

  20. 20.

    E. Elsila, J.P. Dworkin, M.P. Bernstein, M.P. Martin, S.A. Sandford, ApJ 660, 911 (2007)

    ADS  Article  Google Scholar 

  21. 21.

    O. Botta, J.L. Bada, Surveys in Geophysics 23, 411 (2002)

    ADS  Article  Google Scholar 

  22. 22.

    J.R. Cronin, S. Pizzarello, Adv. Space Res. 3, 5 (1983)

    ADS  Article  Google Scholar 

  23. 23.

    M.J. Frisch et al., G09:RevC.01 (Gaussian, Inc., Wallingford CT, 2013)

  24. 24.

    E.E. Etim, E. Arunan, Eur. Phys. J. Plus 131, 448 (2016)

    Article  Google Scholar 

  25. 25.

    E.E. Etim, E. Arunan, Adv. Space Res. 59, 1161 (2017)

    ADS  Article  Google Scholar 

  26. 26.

    E.E. Etim, E. Arunan, Astrophys. Space Sci. 362, 4 (2017)

    ADS  Article  Google Scholar 

  27. 27.

    L.A. Curtiss, P.C. Redfern, K. Raghavachari, J. Chem. Phys. 126, 084108 (2007)

    ADS  Article  Google Scholar 

  28. 28.

    L.J. Nugent, D.E. Mann, D.R.Jr. Lide, J. Chem. Phys. 36, 965 (1962)

    ADS  Article  Google Scholar 

  29. 29.

    B. Dutta, R. De, C. Pal, J. Chowdhury, AcSpA 96, 837 (2012)

    ADS  Google Scholar 

  30. 30.

    R.K. Bohn, J.L. Pardus, J. August, T. Brupbacher, W. Jäger, J. Mol. Struct. 413, 293 (1997)

    ADS  Article  Google Scholar 

  31. 31.

    M.H. Ordu, H.S.P. Müller, A. Walters, M. Nuñez, F. Lewen, A. Belloche, K.M. Menten, S. Schlemmer, A&A 541, A121 (2012)

    ADS  Article  Google Scholar 

  32. 32.

    P. Gorai, A. Das, B. Sivaraman, E.E. Etim, S.K. Chakrabarti, APJ (in press)

  33. 33.

    M. Lattelais, F. Pauzat, J. Pilmé, Y. Ellinger, C. Ceccarelli, A&A 532, A39 (2011)

    ADS  Article  Google Scholar 

  34. 34.

    G.A. Crowder, J. Mol. Struct. (Theochem.) 200, 235 (1989)

    Article  Google Scholar 

  35. 35.

    S.B. Charnley, M.E. Kress, A.G.G.M. Tielens, T.J. Millar, ApJ 448, 232 (1995)

    ADS  Article  Google Scholar 

  36. 36.

    Z. Kisiel, Chem. Phys. Lett. 118, 3 (1985)

    Article  Google Scholar 

  37. 37.

    L.J. Nugent, D.E. Mann, D.R. Lide Jr., J. Chem. Phys. 36, 4 (1962)

    Article  Google Scholar 

  38. 38.

    H.M. Pickett, J. Mol. Spectrosc. 148, 371 (1991)

    ADS  Article  Google Scholar 

  39. 39.

    N.W. Howard, A.C. Legon, C.A. Rego, A.L. Wallwork, J. Mol. Struct. 19, 181 (1989)

    ADS  Article  Google Scholar 

  40. 40.

    P. Gorai, A. Das, L. Majumdar, S.K. Chakrabarti, B. Sivaraman, E. Herbst, Mol. Astrophys. 6, 36 (2017)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Emmanuel E. Etim.

Additional information

Contribution to the Topical Issue “Low-Energy Interactions related to Atmospheric and Extreme Conditions”, edited by S. Ptasinska, M. Smialek-Telega, A. Milosavljevic and B. Sivaraman.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Etim, E.E., Gorai, P., Das, A. et al. C5H9N isomers: pointers to possible branched chain interstellar molecules. Eur. Phys. J. D 71, 86 (2017). https://doi.org/10.1140/epjd/e2017-70611-3

Download citation