Skip to main content
Log in

Adsorption energies of H and H2: a quantum-chemical study

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

An Erratum to this article was published on 19 December 2017

This article has been updated

Abstract

The chemical composition of interstellar grain mantle is mostly dependent on adsorption energies of the surface species. Since hydrogen is widespread either in atomic or in molecular form, our aim in this work is to review (by quantum chemical calculations) the variation of the adsorption energies of H and H2 depending on the nature of the adsorbents. Choice of absorbents was based on relative abundances of interstellar materials. Since carbonaceous and silicate grains are very abundant, we used them as our absorbents. To save computational time, benzene (smallest structure sample of PAHs) is employed as carbonaceous material and for silicate grain, simple cluster of silicon dioxide (silica) (SiO2)3 is used. Around dense cloud regions, water is the major constituent of a grain mantle, therefore, usage of binding energies with bare grains is immaterial. To mimic the water as the adsorbents, we use a water-cluster ((H2O)6). We found that, for all types of adsorbents considered here, binding energies of H are always lower than those of H2, whereas, some of the experimental values are just the other way around. Assuming a steady state solution to the rate equation method, we also present the H2 formation efficiency window in various cases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 19 December 2017

    The title of the article is corrected as follows:

References

  1. V. Wakelam, I.W.M. Smith, E. Herbst, J. Troe, W. Geppert, H. Linnartz, K. Öberg, E. Roueff, M. Agúndez, P. Pernot, H.M. Cuppen, J.C. Loison, D. Talbi, Space Sci. Rev. 156, 13 (2010)

    Article  ADS  Google Scholar 

  2. S. Chakrabarti, S.K. Chakrabarti, A&A 354, L6 (2000)

    ADS  Google Scholar 

  3. A. Das, S.K. Chakrabarti, K. Acharyya, S. Chakrabarti, New Astronomy 13, 457 (2008)

    Article  ADS  Google Scholar 

  4. A. Das, L. Majumdar, S.K. Chakrabarti, S. Chakrabarti, New Astronomy 23, 118 (2013)

    Article  ADS  Google Scholar 

  5. A. Das, L. Majumdar, S.K. Chakrabarti, R. Saha, S. Chakrabarti, Mon. Not. R. Astron. Soc. 433, 3152 (2013)

    Article  ADS  Google Scholar 

  6. A. Das, L. Majumdar, D. Sahu, P. Gorai, B. Sivaraman, S.K. Chakrabarti, ApJ 808, 21 (2015)

    Article  ADS  Google Scholar 

  7. A. Das, L. Majumdar, S.K. Chakrabarti, D. Sahu, New Astronomy 35, 53 (2015)

    Article  ADS  Google Scholar 

  8. S.K. Chakrabarti, L. Majumdar, A. Das, S. Chakrabarti, Astrophys. Space Sci. 357, 90 (2015)

    Article  ADS  Google Scholar 

  9. L. Majumdar, A. Das, S.K. Chakrabarti, S. Chakrabarti, Res. A&A 12, 1613 (2012)

    ADS  Google Scholar 

  10. L. Majumdar, A. Das, S.K. Chakrabarti, S. Chakrabarti, New Astronomy 20, 15 (2013)

    Article  ADS  Google Scholar 

  11. L. Majumdar, A. Das, S.K. Chakrabarti, A&A 562, A56 (2014)

    Article  ADS  Google Scholar 

  12. L. Majumdar, A. Das, S.K. Chakrabarti, ApJ 782, 73 (2014)

    Article  ADS  Google Scholar 

  13. L. Majumdar, P. Gorai, A. Das, S.K. Chakrabarti, Astrophys. Space Sci. 360, 64 (2015)

    Article  ADS  Google Scholar 

  14. B. Sivaraman, N. Radhika, A. Das, G. Gopakumar, L. Majumdar, S.K. Chakrabarti, K.P. Subramanian, B.N. Raja Sekhar, M. Hada, Mon. Not. R. Astron. Soc. 448, 1372 (2015)

    Article  ADS  Google Scholar 

  15. P. Gorai, A. Das, L. Majumdar, S.K. Chakrabarti, B. Sivaraman, E. Herbst, Molecular Astrophysics (2017), doi:10.1016/j.molap.2017.01.004

  16. A.G.G.M. Tielens, The Physics and Chemistry of the Interstellar Medium (Cambridge University Press, 2010)

  17. J.M. Greenberg, Surf. Sci. 500, 793 (2002)

    Article  ADS  Google Scholar 

  18. I. Langmuir, Trans. Faraday Soc. 17, 621 (1922)

    Article  Google Scholar 

  19. D.D. Eley, E.K. Rideal, Nature 146, 401 (1940)

    Article  ADS  Google Scholar 

  20. D.D. Eley, P.R. Soc. A 178, 452 (1941)

    Article  ADS  Google Scholar 

  21. J. Harris, B. Kasemo, Surf. Sci. 105, L281 (1981)

    ADS  Google Scholar 

  22. R.J. Gould, E.E. Salpeter, ApJ 138, 393 (1963)

    Article  ADS  Google Scholar 

  23. D.J. Hollenbach, E.E. Salpeter, J. Chem. Phys. 53, 79 (1970)

    Article  ADS  Google Scholar 

  24. D.J. Hollenbach, E.E. Salpeter, ApJ 163, 155 (1971)

    Article  ADS  Google Scholar 

  25. S.K. Chakrabarti, A. Das, K. Acharyya, S. Chakrabarti, A&A 457, 167 (2006)

    Article  ADS  Google Scholar 

  26. S.K. Chakrabarti, A. Das, K. Acharyya, S. Chakrabarti, Bull. Astr. Soc. India 34, 299 (2006)

    ADS  Google Scholar 

  27. D.A. Williams, Faraday Discuss 109, 1 (1998)

    Article  ADS  Google Scholar 

  28. D.A. Williams, Surf. Sci. 500, 823 (2002)

    Article  ADS  Google Scholar 

  29. A. Hu, W.W. Duley, ApJ 660, L137 (2007)

    Article  ADS  Google Scholar 

  30. O. Biham, I. Furman, V. Pirronello, G. Vidali, ApJ 553, 595 (2001)

    Article  ADS  Google Scholar 

  31. Q. Chang, H.M. Cuppen, E. Herbst, A&A 434, 599 (2005)

    Article  ADS  Google Scholar 

  32. D. Sahu, A. Das, L. Majumdar, S.K. Chakrabarti, New Astronomy 38, 23 (2015)

    Article  ADS  Google Scholar 

  33. A.G.G.M. Tielens, W. Hagen, A&A 114, 245 (1982)

    ADS  Google Scholar 

  34. A. Das, K. Acharyya, S. Chakrabarti, S.K. Chakrabarti, A&A 486, 209 (2008)

    Article  ADS  Google Scholar 

  35. A. Das, K. Acharyya, S.K. Chakrabarti, Mon. Not. R. Astron. Soc. 409, 789 (2010)

    Article  ADS  Google Scholar 

  36. A. Das, S.K. Chakrabarti, Mon. Not. R. Astron. Soc. 418, 545 (2011)

    Article  ADS  Google Scholar 

  37. S. Viti, Astron. Geophys. 48, 25 (2007)

    Google Scholar 

  38. V. Pirronello, C. Liu, L.Y. Shen, G. Vidali, ApJ 475, L69 (1997)

    Article  ADS  Google Scholar 

  39. G. Vidali, J.E. Roser, G. Manico, V. Pirronello, Adv. Space Res. 33, 6 (2004)

    Article  ADS  Google Scholar 

  40. G. Vidali, J.E. Roser, L. Ling, E. Congiu, G. Manicó, V. Pirronello, Faraday Discuss 133, 125 (2006)

    Article  ADS  Google Scholar 

  41. H.J. Fraser, S.E. Bisschop, K.M. Pontoppidan, A.G.G.M. Tielens, E.F. van Dishoeck, Mon. Not. R. Astron. Soc. 356, 125 (2005)

    Article  Google Scholar 

  42. N. Watanabe, A. Nagaoka, T. Shiraki, A. Kouchi, ApJ 616, 638 (2004)

    Article  ADS  Google Scholar 

  43. A. Galano, J. Phys. Chem. A 111, 1677 (2007)

    Article  Google Scholar 

  44. M. Bonfanti, R. Martinazzo, G.F. Tantardini, A. Ponti, J. Phys. Chem. C 111, 5825 (2007)

    Article  Google Scholar 

  45. G. Forte, A. Grassi, G.M. Lombardo, A. La Magna, G.G.N. Angilell, R. Pucci, R. Vilardi, Phys. Lett. A 372, 6168 (2008)

    Article  ADS  Google Scholar 

  46. J. Petucci, C. LeBlond, M. Karimi, G. Vidali, J. Chem. Phys. 139, 044706 (2013)

    Article  ADS  Google Scholar 

  47. M.J. Frisch, G.W. Trucks, H.B. Schlegel et al., G09:RevC.01, Gaussian, Inc., Wallingford CT (2013)

  48. T.H. Dunning Jr., J. Chem. Phys. 90 1007 (1989)

    Article  ADS  Google Scholar 

  49. N.N. Avgul, A.A. Isirikyan, A.V. Kiselev, I.A. Lygina D.P. Poshkus, Russ. Chem. Bull. 6, 1334 (1957)

    Article  Google Scholar 

  50. N.N. Avgul, A.V. Kiselev, I.A. Lygina, D.P. Poshkus, Russ. Chem. Bull. 8, 1155 (1959)

    Article  Google Scholar 

  51. R. Barrer, Proc. Royal Soc. A161, 476 (1937)

    Article  ADS  Google Scholar 

  52. S.F. Boys, S. Bernardi, Mol. Phys. 19, 553 (1970)

    Article  ADS  Google Scholar 

  53. K. Ohno, M. Okimura, N. Akaib, Y. Katsumotoa, Phys. Chem. Chem. Phys. 7, 3005 (2005)

    Article  Google Scholar 

  54. A. Das, D. Sahu, L. Majumdar, S.K. Chakrabarti, Mon. Not. R. Astron. Soc. 455, 540 (2016)

    Article  ADS  Google Scholar 

  55. M. Allen, G.W. Robinson, ApJ 212, 396 (1977)

    Article  ADS  Google Scholar 

  56. N. Katz, I. Furmann, O. Biham, V. Pironello, G. Vidali, ApJ 522, 305 (1999)

    Article  ADS  Google Scholar 

  57. G. Vidali, G. Ihm, H.-Y. Kim, M.W. Cole, Surf. Sci. Rep. 12, 133 (1991)

    Article  ADS  Google Scholar 

  58. V. Pirronello, C. Liu, J.E. Roser, G. Vidali, A&A 344, 681 (1999)

    ADS  Google Scholar 

  59. E. Ghio, L. Mattera, C. Salvo, F. Tommasini, U. Valbusa, J. Chem. Phys 73, 556 (1980)

    Article  ADS  Google Scholar 

  60. S. Han, H.M. Lee, Carbon 42, 2169 (2004)

    Article  Google Scholar 

  61. F. Dulieu, L. Amiaud, S. Baouche, A. Momeni, J.-H. Fillion, J.L. Lemaire, Chem. Phys. Lett. 404, 187 (2005)

    Article  ADS  Google Scholar 

  62. S.A. Sandford, L.J. Allamandola, ApJ 409, L65 (1993)

    Article  ADS  Google Scholar 

  63. L. Hornekaer, A. Baurichter, V.V. Petrunin, A.C. Luntz, B.D. Kay, A. Al-Halabi, J. Chem. Phys. 122, 124701 (2005)

    Article  ADS  Google Scholar 

  64. H. Cuppen, L. Hornekaer, J. Chem. Phys. 128, 174707 (2008)

    Article  ADS  Google Scholar 

  65. V. Buch, R. Czerminski, J. Chem. Phys. 95, 6026 (1991)

    Article  ADS  Google Scholar 

  66. A. Al-Halabi, A. Kleyn, E.F. van Dishoeck, G.J. Kroes, J. Phys. Chem. B 106, 6515 (2002)

    Article  Google Scholar 

  67. A. Al-Halabi, E.F. van Dishoek, Mon. Not. R. Astron. Soc. 382, 1648 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankan Das.

Additional information

Contribution to the Topical Issue “Low-Energy Interactions related to Atmospheric and Extreme Conditions”, edited by S. Ptasinska, M. Smialek-Telega, A. Milosavljevic and B. Sivaraman.

An erratum to this article is available at https://doi.org/10.1140/epjd/e2017-80697-0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sil, M., Gorai, P., Das, A. et al. Adsorption energies of H and H2: a quantum-chemical study. Eur. Phys. J. D 71, 45 (2017). https://doi.org/10.1140/epjd/e2017-70610-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-70610-4

Navigation