Adsorption energies of H and H2: a quantum-chemical study

  • Milan Sil
  • Prasanta Gorai
  • Ankan Das
  • Dipen Sahu
  • Sandip K. Chakrabarti
Regular Article
Part of the following topical collections:
  1. Topical Issue: Low-Energy Interactions related to Atmospheric and Extreme Conditions

Abstract

The chemical composition of interstellar grain mantle is mostly dependent on adsorption energies of the surface species. Since hydrogen is widespread either in atomic or in molecular form, our aim in this work is to review (by quantum chemical calculations) the variation of the adsorption energies of H and H2 depending on the nature of the adsorbents. Choice of absorbents was based on relative abundances of interstellar materials. Since carbonaceous and silicate grains are very abundant, we used them as our absorbents. To save computational time, benzene (smallest structure sample of PAHs) is employed as carbonaceous material and for silicate grain, simple cluster of silicon dioxide (silica) (SiO2)3 is used. Around dense cloud regions, water is the major constituent of a grain mantle, therefore, usage of binding energies with bare grains is immaterial. To mimic the water as the adsorbents, we use a water-cluster ((H2O)6). We found that, for all types of adsorbents considered here, binding energies of H are always lower than those of H2, whereas, some of the experimental values are just the other way around. Assuming a steady state solution to the rate equation method, we also present the H2 formation efficiency window in various cases.

Graphical abstract

References

  1. 1.
    V. Wakelam, I.W.M. Smith, E. Herbst, J. Troe, W. Geppert, H. Linnartz, K. Öberg, E. Roueff, M. Agúndez, P. Pernot, H.M. Cuppen, J.C. Loison, D. Talbi, Space Sci. Rev. 156, 13 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    S. Chakrabarti, S.K. Chakrabarti, A&A 354, L6 (2000)ADSGoogle Scholar
  3. 3.
    A. Das, S.K. Chakrabarti, K. Acharyya, S. Chakrabarti, New Astronomy 13, 457 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    A. Das, L. Majumdar, S.K. Chakrabarti, S. Chakrabarti, New Astronomy 23, 118 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    A. Das, L. Majumdar, S.K. Chakrabarti, R. Saha, S. Chakrabarti, Mon. Not. R. Astron. Soc. 433, 3152 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    A. Das, L. Majumdar, D. Sahu, P. Gorai, B. Sivaraman, S.K. Chakrabarti, ApJ 808, 21 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    A. Das, L. Majumdar, S.K. Chakrabarti, D. Sahu, New Astronomy 35, 53 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    S.K. Chakrabarti, L. Majumdar, A. Das, S. Chakrabarti, Astrophys. Space Sci. 357, 90 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    L. Majumdar, A. Das, S.K. Chakrabarti, S. Chakrabarti, Res. A&A 12, 1613 (2012)ADSGoogle Scholar
  10. 10.
    L. Majumdar, A. Das, S.K. Chakrabarti, S. Chakrabarti, New Astronomy 20, 15 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    L. Majumdar, A. Das, S.K. Chakrabarti, A&A 562, A56 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    L. Majumdar, A. Das, S.K. Chakrabarti, ApJ 782, 73 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    L. Majumdar, P. Gorai, A. Das, S.K. Chakrabarti, Astrophys. Space Sci. 360, 64 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    B. Sivaraman, N. Radhika, A. Das, G. Gopakumar, L. Majumdar, S.K. Chakrabarti, K.P. Subramanian, B.N. Raja Sekhar, M. Hada, Mon. Not. R. Astron. Soc. 448, 1372 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    P. Gorai, A. Das, L. Majumdar, S.K. Chakrabarti, B. Sivaraman, E. Herbst, Molecular Astrophysics (2017), doi:10.1016/j.molap.2017.01.004Google Scholar
  16. 16.
    A.G.G.M. Tielens, The Physics and Chemistry of the Interstellar Medium (Cambridge University Press, 2010)Google Scholar
  17. 17.
    J.M. Greenberg, Surf. Sci. 500, 793 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    I. Langmuir, Trans. Faraday Soc. 17, 621 (1922)CrossRefGoogle Scholar
  19. 19.
    D.D. Eley, E.K. Rideal, Nature 146, 401 (1940)ADSCrossRefGoogle Scholar
  20. 20.
    D.D. Eley, P.R. Soc. A 178, 452 (1941)ADSCrossRefGoogle Scholar
  21. 21.
    J. Harris, B. Kasemo, Surf. Sci. 105, L281 (1981)ADSGoogle Scholar
  22. 22.
    R.J. Gould, E.E. Salpeter, ApJ 138, 393 (1963)ADSCrossRefGoogle Scholar
  23. 23.
    D.J. Hollenbach, E.E. Salpeter, J. Chem. Phys. 53, 79 (1970)ADSCrossRefGoogle Scholar
  24. 24.
    D.J. Hollenbach, E.E. Salpeter, ApJ 163, 155 (1971)ADSCrossRefGoogle Scholar
  25. 25.
    S.K. Chakrabarti, A. Das, K. Acharyya, S. Chakrabarti, A&A 457, 167 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    S.K. Chakrabarti, A. Das, K. Acharyya, S. Chakrabarti, Bull. Astr. Soc. India 34, 299 (2006)ADSGoogle Scholar
  27. 27.
    D.A. Williams, Faraday Discuss 109, 1 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    D.A. Williams, Surf. Sci. 500, 823 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    A. Hu, W.W. Duley, ApJ 660, L137 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    O. Biham, I. Furman, V. Pirronello, G. Vidali, ApJ 553, 595 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    Q. Chang, H.M. Cuppen, E. Herbst, A&A 434, 599 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    D. Sahu, A. Das, L. Majumdar, S.K. Chakrabarti, New Astronomy 38, 23 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    A.G.G.M. Tielens, W. Hagen, A&A 114, 245 (1982)ADSGoogle Scholar
  34. 34.
    A. Das, K. Acharyya, S. Chakrabarti, S.K. Chakrabarti, A&A 486, 209 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    A. Das, K. Acharyya, S.K. Chakrabarti, Mon. Not. R. Astron. Soc. 409, 789 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    A. Das, S.K. Chakrabarti, Mon. Not. R. Astron. Soc. 418, 545 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    S. Viti, Astron. Geophys. 48, 25 (2007)Google Scholar
  38. 38.
    V. Pirronello, C. Liu, L.Y. Shen, G. Vidali, ApJ 475, L69 (1997)ADSCrossRefGoogle Scholar
  39. 39.
    G. Vidali, J.E. Roser, G. Manico, V. Pirronello, Adv. Space Res. 33, 6 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    G. Vidali, J.E. Roser, L. Ling, E. Congiu, G. Manicó, V. Pirronello, Faraday Discuss 133, 125 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    H.J. Fraser, S.E. Bisschop, K.M. Pontoppidan, A.G.G.M. Tielens, E.F. van Dishoeck, Mon. Not. R. Astron. Soc. 356, 125 (2005)CrossRefGoogle Scholar
  42. 42.
    N. Watanabe, A. Nagaoka, T. Shiraki, A. Kouchi, ApJ 616, 638 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    A. Galano, J. Phys. Chem. A 111, 1677 (2007)CrossRefGoogle Scholar
  44. 44.
    M. Bonfanti, R. Martinazzo, G.F. Tantardini, A. Ponti, J. Phys. Chem. C 111, 5825 (2007)CrossRefGoogle Scholar
  45. 45.
    G. Forte, A. Grassi, G.M. Lombardo, A. La Magna, G.G.N. Angilell, R. Pucci, R. Vilardi, Phys. Lett. A 372, 6168 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    J. Petucci, C. LeBlond, M. Karimi, G. Vidali, J. Chem. Phys. 139, 044706 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel et al., G09:RevC.01, Gaussian, Inc., Wallingford CT (2013)Google Scholar
  48. 48.
    T.H. Dunning Jr., J. Chem. Phys. 90 1007 (1989)ADSCrossRefGoogle Scholar
  49. 49.
    N.N. Avgul, A.A. Isirikyan, A.V. Kiselev, I.A. Lygina D.P. Poshkus, Russ. Chem. Bull. 6, 1334 (1957)CrossRefGoogle Scholar
  50. 50.
    N.N. Avgul, A.V. Kiselev, I.A. Lygina, D.P. Poshkus, Russ. Chem. Bull. 8, 1155 (1959)CrossRefGoogle Scholar
  51. 51.
    R. Barrer, Proc. Royal Soc. A161, 476 (1937)ADSCrossRefGoogle Scholar
  52. 52.
    S.F. Boys, S. Bernardi, Mol. Phys. 19, 553 (1970)ADSCrossRefGoogle Scholar
  53. 53.
    K. Ohno, M. Okimura, N. Akaib, Y. Katsumotoa, Phys. Chem. Chem. Phys. 7, 3005 (2005)CrossRefGoogle Scholar
  54. 54.
    A. Das, D. Sahu, L. Majumdar, S.K. Chakrabarti, Mon. Not. R. Astron. Soc. 455, 540 (2016)ADSCrossRefGoogle Scholar
  55. 55.
    M. Allen, G.W. Robinson, ApJ 212, 396 (1977)ADSCrossRefGoogle Scholar
  56. 56.
    N. Katz, I. Furmann, O. Biham, V. Pironello, G. Vidali, ApJ 522, 305 (1999)ADSCrossRefGoogle Scholar
  57. 57.
    G. Vidali, G. Ihm, H.-Y. Kim, M.W. Cole, Surf. Sci. Rep. 12, 133 (1991)ADSCrossRefGoogle Scholar
  58. 58.
    V. Pirronello, C. Liu, J.E. Roser, G. Vidali, A&A 344, 681 (1999)ADSGoogle Scholar
  59. 59.
    E. Ghio, L. Mattera, C. Salvo, F. Tommasini, U. Valbusa, J. Chem. Phys 73, 556 (1980)ADSCrossRefGoogle Scholar
  60. 60.
    S. Han, H.M. Lee, Carbon 42, 2169 (2004)CrossRefGoogle Scholar
  61. 61.
    F. Dulieu, L. Amiaud, S. Baouche, A. Momeni, J.-H. Fillion, J.L. Lemaire, Chem. Phys. Lett. 404, 187 (2005)ADSCrossRefGoogle Scholar
  62. 62.
    S.A. Sandford, L.J. Allamandola, ApJ 409, L65 (1993)ADSCrossRefGoogle Scholar
  63. 63.
    L. Hornekaer, A. Baurichter, V.V. Petrunin, A.C. Luntz, B.D. Kay, A. Al-Halabi, J. Chem. Phys. 122, 124701 (2005)ADSCrossRefGoogle Scholar
  64. 64.
    H. Cuppen, L. Hornekaer, J. Chem. Phys. 128, 174707 (2008)ADSCrossRefGoogle Scholar
  65. 65.
    V. Buch, R. Czerminski, J. Chem. Phys. 95, 6026 (1991)ADSCrossRefGoogle Scholar
  66. 66.
    A. Al-Halabi, A. Kleyn, E.F. van Dishoeck, G.J. Kroes, J. Phys. Chem. B 106, 6515 (2002)CrossRefGoogle Scholar
  67. 67.
    A. Al-Halabi, E.F. van Dishoek, Mon. Not. R. Astron. Soc. 382, 1648 (2007)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Milan Sil
    • 1
  • Prasanta Gorai
    • 1
  • Ankan Das
    • 1
  • Dipen Sahu
    • 2
    • 1
  • Sandip K. Chakrabarti
    • 3
    • 1
  1. 1.Indian Centre for Space PhysicsKolkataIndia
  2. 2.Atomic Molecular and Optical Spectroscopy Division, Physical Research LaboratoryAhmedabadIndia
  3. 3.S. N. Bose National Centre for Basic Sciences, Salt LakeKolkataIndia

Personalised recommendations