Rayleigh Lidar observed atmospheric temperature characteristics over a western Indian location: intercomparison with satellite observations and models

  • Som Sharma
  • Rajesh Vaishnav
  • Krishna K. Shukla
  • Shyam Lal
  • Harish Chandra
  • Yashwant B. Acharya
Regular Article
Part of the following topical collections:
  1. Topical Issue: Low-Energy Interactions related to Atmospheric and Extreme Conditions

Abstract

General characteristics of sub-tropical middle atmospheric temperature structure over a high altitude station, Mt. Abu (24.5°N, 72.7°E, altitude ~1670 m, above mean sea level (amsl)) are presented using about 150 nights observational datasets of Rayleigh Lidar. The monthly mean temperature contour plot shows two distinct maxima in the stratopause region (~45–55 km), occurring during February-March and September-October, a seasonal dependence similar to that reported for mid- and high-latitudes respectively. Semi-Annual Oscillation (SAO) are stronger at an altitude ~60 km in the mesospheric temperature in comparison to stratospheric region. A comparison with the satellite (Halogen Occultation Experiment, (HALOE)) data shows qualitative agreement, but quantitatively a significant difference is found between the observation and satellite. The derived temperatures from Lidar observations are warmer ~2–3 K in the stratospheric region and ~5–10 K in the mesospheric region than temperatures observed from the satellite. A comparison with the models, COSPAR International Reference Atmosphere (CIRA)-86 and Mass Spectrometer Incoherent Scatter Extended (MSISE)-90, showed differences of ~3 K in the stratosphere and ~5–10 K in the mesosphere, with deviations somewhat larger for CIRA-86. In most of the months and in all altitude regions model temperatures were lower than the Lidar observed temperature except in the altitude range of 40–50 km. MSISE-90 Model temperature overestimates as compared to Lidar temperature during December-February in the altitude region of 50–60 km. In the altitude region of 55–70 km both models deviate significantly, with differences exceeding 10–12 K, particularly during equinoctial periods. An average heating rate of ~2.5 K/month during equinoxes and cooling rate of ~4 K/month during November-December are found in altitude region of 50–70 km, relatively less heating and cooling rates are found in the altitude range of 30–50 km. The stratospheric temperature derived from the Lidar and columnar ozone observed by the Total Ozone Mapping Spectrometer (TOMS) over Mt. Abu shows good correlation (r 2 = 0.61) and indicates the association of ozone with the temperature.

Graphical abstract

References

  1. 1.
    J.B. Nee, S. Thulasiramana, W.N. Chen, M.V. Ratnam, D.N. Rao, J. Atmos. Sol. Terr. Phys. 64, 1311 (2002) ADSCrossRefGoogle Scholar
  2. 2.
    V. Sivakumar, P.B. Rao, M. Krishnaiah, J. Geophys. Res. 108, 4342 (2003) CrossRefGoogle Scholar
  3. 3.
    C.Y. She et al., Res. Lett. 30, 1319 (2003) ADSCrossRefGoogle Scholar
  4. 4.
    W.J. Randel et al., J. Clim. 17, 986 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    P.S. Argall, R.J. Sica, Ann. Geophys. 25, 27 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    T. Li, T. Leblanc, I.S. McDermid, J. Geophys. Res. 113, D14109 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    G.D. Donfrancesco, A. Adriani, G.P. Gobbi, F. Congeduti, J. Atmos. Terr. Phys. 58, 1391 (1996) ADSCrossRefGoogle Scholar
  8. 8.
    A.R. Klckouciuk, M.M. Lambert, R.A. Vincent, Adv. Space Res. 32, 771 (2003) ADSCrossRefGoogle Scholar
  9. 9.
    T.J. Duck, J.A. Whiteway, A.I. Carswell, J. Geophys. Res. 105, 909 (2000) CrossRefGoogle Scholar
  10. 10.
    A. Schöch, G. Baumgarten, J. Fiedler, Ann. Geophys. 26, 1681 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    M.N. Sasi, K. Sengupta, A model equatorial atmosphere over the Indian zone from 0 to 80 km, Scientific report, ISRO–VSSC–SR–19, 1979 Google Scholar
  12. 12.
    S. Lal, B.H. Subbaraya, V. Narayanan, Space Res. 19, 147 (1979) Google Scholar
  13. 13.
    B.H. Subbaraya, S. Lal, Pure Appl. Geophys. 118, 581 (1980) ADSCrossRefGoogle Scholar
  14. 14.
    M.N. Sasi, Ind. J. Rad. Space Phys. 23, 299 (1994) Google Scholar
  15. 15.
    K. Mohankumar, Ann. Geophys. 12, 448 (1994) ADSCrossRefGoogle Scholar
  16. 16.
    S. Lal, Studies in equatorial neutral atmosphere, Ph.D. thesis, Gujarat University, 1981 Google Scholar
  17. 17.
    B.H. Subbaraya, S. Lal, Proc. Indian Acad. Sci. (Earth Planet. Sci.) 90, 173 (1981) ADSGoogle Scholar
  18. 18.
    M. Naja, S. Lal, Geophys. Res. Lett. 23, 81 (1996) ADSCrossRefGoogle Scholar
  19. 19.
    T. Leblanc, I.S. McDermid, J. Geophys. Res. 106, 14,869 (2001) ADSCrossRefGoogle Scholar
  20. 20.
    L.K. Sahu, S. Lal, Geophys. Res. Lett. 33, L10807 (2006) ADSCrossRefGoogle Scholar
  21. 21.
    V. Eyring et al., J. Geophys. Res. 12, D16303 (2007) ADSCrossRefGoogle Scholar
  22. 22.
    J.P.F. Fortuin, H. Kelder, J. Geophys. Res. 103, 31,709 (1998) ADSCrossRefGoogle Scholar
  23. 23.
    H.A. Michelson, G.L. Manney, M.R. Gunson, R. Zander, J. Geophys. Res. 103, 28, 347–28, 359 (1998) Google Scholar
  24. 24.
    T.G. Shepherd, Chem. Rev. 103, 4509 (2003) CrossRefGoogle Scholar
  25. 25.
    W. Steinbrecht, B. Hassler, H. Claude, P. Winkler, R.S. Stolarski, Atmos. Chem. Phys. 3, 1421 (2003) ADSCrossRefGoogle Scholar
  26. 26.
    S.H.E. Hare, L.J. Gray, W.A. Lahoz, A.O. Neill, L. Steenman-Clark, J. Geophys. Res. 109, D05111 (2004) ADSGoogle Scholar
  27. 27.
    P. Keckhut et al., J. Environ. Monit. 6, 721 (2004) CrossRefGoogle Scholar
  28. 28.
    D.J. Karoly, Science 302, 236 (2003) CrossRefGoogle Scholar
  29. 29.
    W.J. Randel et al., J. Clim. 17, 986 (2004) ADSCrossRefGoogle Scholar
  30. 30.
    H. Chandra, S. Sharma, Y.B. Acharya, A. Jayaraman, J. Ind. Geophys. Union 9, 279 (2005) Google Scholar
  31. 31.
    A. Hauchecorne, M.L. Chanin, Geophys. Res. Lett. 7, 565 (1980) ADSCrossRefGoogle Scholar
  32. 32.
    M.L. Chanin, J. Geophys. Res. 10, 9715 (1981) ADSCrossRefGoogle Scholar
  33. 33.
    T. Leblanc, I.S. McDermid, J. Geophys. Res. 105, 14,613 (2000) ADSCrossRefGoogle Scholar
  34. 34.
    T. Leblanc, I. Mcdermid, A. Hauchecorne, P. Keckhut, J. Geophys. Res. 107, 6177 (1998a) ADSCrossRefGoogle Scholar
  35. 35.
    T.G. Shepherd, J. Met. Soc. Jpn B 85, 165 (2007) CrossRefGoogle Scholar
  36. 36.
    T. Leblanc, A. Hauchecorne, J. Geophys. Res. 102, 19,471 (1997) ADSCrossRefGoogle Scholar
  37. 37.
    P. Keckhut et al., J. Geophys. Res. 101, 10,299 (1996) ADSCrossRefGoogle Scholar
  38. 38.
    D. Pancheva et al., J. Geophys. Res. 113, D12105 (2008) ADSCrossRefGoogle Scholar
  39. 39.
    L.L. Hood, R. McPeters, J. McCormack, L. Flynn, S. Hollandsworth, J. Gleason, Geophys. Res. Lett. 20, 2667 (1993) ADSCrossRefGoogle Scholar
  40. 40.
    P.H. Wang, M.P. McCormick, W.P. Chu, J. Lenoble, R.M. Nagatani, M. L. Chanin, R.A. Barnes, F. Schmidlin, M. Rowland, J. Geophys. Res. 97, 843 (1992) ADSCrossRefGoogle Scholar
  41. 41.
    R.T. Clancy, D.W. Rusch, M.T. Callan, J. Geophys. Res. 99, 19,001 (1994) ADSCrossRefGoogle Scholar
  42. 42.
    M.E. Hagan, J.M. Forbes, F. Vial, On modelling migrating solar tides, Geophys. Res. Lett. 22, 893 (1995) ADSCrossRefGoogle Scholar
  43. 43.
    F.T. Huang, H.G. Mayr, C.A. Reber, Ann. Geophys. 23, 1131 (2005) ADSCrossRefGoogle Scholar
  44. 44.
    G. Gobbi, Ann. Geophys. 13, 648 (1995) ADSCrossRefGoogle Scholar
  45. 45.
    R.A. Wilson, A. Hauchecorne, M. Chanin, Geophys. Res. Lett. 17, 1585 (1990) ADSCrossRefGoogle Scholar
  46. 46.
    S. Sharma, V. Sivakumar, H. Chandra, P.B. Rao, Adv. Space Res. 7, 2278 (2006) ADSCrossRefGoogle Scholar
  47. 47.
    W.K. Hocking, T. Carey-Smith, D.W. Tarasick, P.S. Argall, K. Strong, Y. Rochon, I. Zawadzki, P.A. Taylor, Science 450, 281 (2007) Google Scholar
  48. 48.
    S.S. Das, Geophys. Res. Lett. 36, L15821 (2009) ADSCrossRefGoogle Scholar
  49. 49.
    W. Chen, H.-F. Graf, M. Takahashi, Geophys. Res. Lett. 29, 2073 (2002) ADSGoogle Scholar
  50. 50.
    W. Chen, T. Li, J. Geophys. Res. 112, D20120 (2007) ADSCrossRefGoogle Scholar
  51. 51.
    G. Branstator, J. Atmos. Sci. 41, 2163 (1984) ADSCrossRefGoogle Scholar
  52. 52.
    M. Ting, M.P. Hoerling, T. Xu, A. Kumar, J. Clim. 9, 2615 (1996) ADSCrossRefGoogle Scholar
  53. 53.
    S. Sharma, Lidar studies of middle atmospheric density and temperature structures over Mt. Abu, Ph.D. thesis, Gujarat University, Ahmedabad, India, 2010 Google Scholar
  54. 54.
    S. Sharma, S. Sridharan, H. Chandra, S. Lal, Y.B. Acharya, Planet. Space Sci. 63, 36 (2012) ADSCrossRefGoogle Scholar
  55. 55.
    S. Pawson, R.S. Stolarski, A.R. Douglass, P.A. Newman, J.E. Nielsen, S.M. Frith, M.L. Gupta, J. Geophys. Res. 113, D12103 (2008) ADSCrossRefGoogle Scholar
  56. 56.
    A. Robock, Science 272, 972 (1996) ADSCrossRefGoogle Scholar
  57. 57.
    C. Cagnazzo, C. Claud, S. Hare, Clim. Dyn. 27, 101 (2006) CrossRefGoogle Scholar
  58. 58.
    A. Hauchecorne, M. Chanin, P. Keckhut, J. Geophys. Res. 15, 297 (1991) Google Scholar
  59. 59.
    V. Ramaswamy et al., Rev. Geophys. 39, 71 (2001) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Som Sharma
    • 1
  • Rajesh Vaishnav
    • 1
  • Krishna K. Shukla
    • 1
  • Shyam Lal
    • 1
  • Harish Chandra
    • 1
  • Yashwant B. Acharya
    • 1
  1. 1.Physical Research LaboratoryAhmedabadIndia

Personalised recommendations