Skip to main content
Log in

Manipulation of slow and superluminal light based on a graphene nanoribbon resonator

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We theoretically investigate the phenomena of slow and superluminal light based on a doubly clamped Z-shaped graphene nanoribbon (GNR) nanomechanical resonator driven by two-tone fields. Superluminal and ultraslow probe light without absorption can be obtained via manipulating the pump laser on- and off-resonant with the exciton frequency, respectively. The results indicate that the above phenomena cannot occur without the coupling between graphene resonator and excition in the system. Further, the all-optical schemes for determining the graphene resonator frequency and the coupling strength of excition-resonator in the Z-shaped GNR system are also proposed. The all-optical device based on graphene resonator may have potential application in optical networks and engineering in nanoscale.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, Nature 397, 594 (1999)

    Article  ADS  Google Scholar 

  2. S.E. Harris, Phys. Today 50, 36 (1997)

    Article  Google Scholar 

  3. K.J. Boller, A. Imamoglu, S.E. Harris, Phys. Rev. Lett. 66, 2593 (1991)

    Article  ADS  Google Scholar 

  4. M. Fleischhauer, A. Imamoglu, J.P. Marangos, Rev. Mod. Phys. 77, 633 (2005)

    Article  ADS  Google Scholar 

  5. M.D. Lukin, Rev. Mod. Phys. 75, 457 (2003)

    Article  ADS  Google Scholar 

  6. C. Liu, Z. Dutton, C.H. Behroozi, L.V. Hau, Nature 409, 490 (2001)

    Article  ADS  Google Scholar 

  7. L.J. Wang, A. Kuzmich, A. Dogariu, Nature 406, 277 (2000)

    Article  ADS  Google Scholar 

  8. M.S. Bigelow, N.N. Lepeshkin, R.W. Boyd, Science 301, 200 (2003)

    Article  ADS  Google Scholar 

  9. E. Podivilov, B. Sturman, A. Shumelyuk, S. Odoulov, Phys. Rev. Lett. 91, 083902 (2003)

    Article  ADS  Google Scholar 

  10. G. Zhang, F. Bo, R. Dong, J. Xu, Phys. Rev. Lett. 93, 133903 (2004)

    Article  ADS  Google Scholar 

  11. P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, C.J. Chang-Hasnain, Opt. Express 13, 9909 (2005)

    Article  ADS  Google Scholar 

  12. Z. Zhu, D.J. Gauthier, R.W. Boyd, Science 318, 1748 (2007)

    Article  ADS  Google Scholar 

  13. L. Thévenaz, Nat. Photon. 2, 474 (2008)

    Article  ADS  Google Scholar 

  14. S. Residori, U. Bortolozzo, J.P. Huignard, Phys. Rev. Lett. 100, 203603 (2008)

    Article  ADS  Google Scholar 

  15. U. Bortolozzo, S. Residori, J.P. Huignard, Laser Photonics Rev. 4, 483 (2010)

    Article  Google Scholar 

  16. B. Chen, C. Jiang, K.D. Zhu, Phys. Rev. A 83, 055803 (2011)

    Article  ADS  Google Scholar 

  17. D. Tarhan, S. Huang, O.E. Müstecaplıoğlu, Phys. Rev. A 87, 013824 (2013)

    Article  ADS  Google Scholar 

  18. A.H. Safavi-Naeini, T.P. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J.T. Hill, D.E. Chang, O. Painter, Nature 472, 69 (2011)

    Article  ADS  Google Scholar 

  19. C. Chen, S. Rosenblatt, K.I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H.L. Stormer, T.F. Heinz, J. Hone, Nat. Nanotechnol. 4, 861 (2009)

    Article  ADS  Google Scholar 

  20. A.K. Geim, Science 324, 1530 (2009)

    Article  ADS  Google Scholar 

  21. S.D. Sarma, S. Adam, E.H. Hwang, E. Rossi, Rev. Mod. Phys. 83, 407 (2011)

    Article  ADS  Google Scholar 

  22. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Adv. Mater. 22, 3906 (2010)

    Article  Google Scholar 

  23. K.P. Loh, Q. Bao, G. Eda, M. Chhowalla, Nat. Chem. 2, 1015 (2010)

    Article  Google Scholar 

  24. L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Nature 458, 877 (2009)

    Article  ADS  Google Scholar 

  25. J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, A.P. Muoth, M. Seitsonen, M. Saleh, X. Feng, K. Muellen, R. Fasel, Nature 466, 470 (2010)

    Article  ADS  Google Scholar 

  26. X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Science 319, 1229 (2008)

    Article  ADS  Google Scholar 

  27. X. Jia, J. Campos-Delgado, M. Terrones, V. Meuniere, M.S. Dresselhaus, Nanoscale 3, 86 (2011)

    Article  ADS  Google Scholar 

  28. X. Wang, Y. Ouyang, L. Jiao, H. Wang, L. Xie, J. Wu, J. Guo, H. Dai, Nature Nanotechnol. 6, 563 (2011)

    Article  ADS  Google Scholar 

  29. X. Zhang, O.V. Yazyev, J. Feng, L. Xie, C. Tao, Y.C. Chen, L. Jiao, Z. Pedramrazi, A. Zettl, S.G. Louie, H. Dai, M.F. Crommie, ACS Nano 7, 198 (2013)

    Article  Google Scholar 

  30. T. Wehling, K. Novoselov, S. Morozov, E. Vdovin, M. Katsnelson, A. Geim, A. Lichtenstein, Nano Lett. 8, 173 (2008)

    Article  ADS  Google Scholar 

  31. W. Bin, K.D. Zhu, Appl. Opt. 52, 5816 (2013)

    Article  ADS  Google Scholar 

  32. Z.F. Wang, Q.W. Shi, Q. Li, X. Wang, J.G. Hou, H. Zheng, Y. Yao, J. Chen, Appl. Phy. Lett. 91, 053109 (2007)

    Article  ADS  Google Scholar 

  33. D. Prezzi, D. Varsano, A. Ruini, E. Molinari, Phys. Rev. B 84, 041401(R) (2011)

    Article  ADS  Google Scholar 

  34. R.W. Boyd, Nonlinear Optics (Academic, San Diego, California, 1992), p. 225

  35. X. Xu, B. Sun, P.R. Berman, D.G. Steel, A.S. Bracker, D. Gammon, L.J. Sham, Science 317, 929 (2007)

    Article  ADS  Google Scholar 

  36. S. Weis, R. Rivière, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, T.J. Kippenberg, Science 330, 1520 (2010)

    Article  ADS  Google Scholar 

  37. A.H. Castro, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  38. B. Trauzettel, D.V. Bulaev, D. Loss, G. Burkard, Nat. Phys. 3, 192 (2007)

    Article  Google Scholar 

  39. J.M. Pereira, P. Vasilopoulos, F.M. Peeters, Nano Lett. 7, 946 (2007)

    Article  ADS  Google Scholar 

  40. M. Sadeghi, R. Naghdabadi, Nanotechnology 21, 105705 (2010)

    Article  ADS  Google Scholar 

  41. O.K. Kwon, K. Kim, J. Park, J.W. Kang, Comput. Mater. Sci. 67, 329 (2013)

    Article  Google Scholar 

  42. I. Wilson-Rae, C. Galland, W. Zwerger, A. Imamoğlu, New J. Phys. 14, 115003 (2012)

    Article  ADS  Google Scholar 

  43. D.F. Walls, G.J. Milburn, Quantum Optics (Springer, 1994)

  44. S.E. Harris, J.E. Field, A. Kasapi, Phys. Rev. A 46, R29 (1992)

    Article  ADS  Google Scholar 

  45. R.S. Bennink, R.W. Boyd, C.R. Stroud, V. Wong, Phys. Rev. A 63, 033804 (2001)

    Article  ADS  Google Scholar 

  46. R.W. Boyd, D.J. Gauthier, Science 326, 1074 (2009)

    Article  ADS  Google Scholar 

  47. A.M. van der Zande, R.A. Barton, J.S. Alden, C.S. Ruiz-Vargas, W.S. Whitney, P.H.Q. Pham, J. Park, J.M. Parpia, H.G. Craighead, P.L. McEuen, Nano Lett. 10, 4869 (2010)

    Article  ADS  Google Scholar 

  48. J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L.B. Alemany, X. Zhan, G. Gao, S.A. Vithayathil, B.A. Kaipparettu, A.A. Marti, T. Hayashi, J.J. Zhu, P.M. Ajayan, Nano Lett. 12, 844 (2012)

    Article  ADS  Google Scholar 

  49. J.J. Li, K.D. Zhu, Opt. Express 20, 5840 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Jun Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, HJ., Sun, BB., Wu, HW. et al. Manipulation of slow and superluminal light based on a graphene nanoribbon resonator. Eur. Phys. J. D 71, 67 (2017). https://doi.org/10.1140/epjd/e2017-70595-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-70595-x

Keywords

Navigation