Impact of S doping on the structural, electronic and magnetic properties of Cr n (n = 2 − 6) clusters

  • Rachid Mecheref
  • Said Bouarab
  • Mourad Zemirli
  • Andrés Vega
Regular Article


The impact of sulphur doping on the geometrical and electronic properties of small chromium clusters with up to six atoms is investigated within the density functional theory in the generalized gradient approximation for exchange and correlation. Neutral and charged states are considered in order to analyze the behavior of the vertical ionization potential and adiabatic electron affinity as a function of cluster size. We find good agreement with experimental data for the above electronic indicators in the case of pure chromium clusters, and show that S doping enhances their absolute stability, without destroying for the smaller ones, or not completely for the larger ones, the dimerization pattern typical of small particles made of elements with exact half-band filling. Thus, the chromium skeleton is largely preserved in general. Moreover, S doping does not destroy the odd-even behavior of the electronic quantities either. We find lower relative stability in clusters with odd number of Cr atoms than in those with even number, while only odd-Cr clusters retain a total magnetic moment which results slightly quenched upon S doping. The moment of the anionic clusters remains unchanged upon doping. We show that doping with an S impurity is a way to increase the stability of small Cr nanoparticles, without substantially modifying their magnetic properties and other electronic indicators.

Graphical abstract


Clusters and Nanostructures 


  1. 1.
    H. Topsøe, B.S. Clausen, F.E. Massoth, in Hydrotreating Catalysis – Science and Technology, Vol. 11, edited by J.R. Anderson, M. Boudart (Springer-Verlag, Berlin, 1996)Google Scholar
  2. 2.
    F.J. Clauss, in Solid Lubricants, Self-Lubricating Solids, (Academic, New York, 1972)Google Scholar
  3. 3.
    J.R. Lince, P.D. Fleischauer, J. Mater. Res. 2, 827 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    Chen-Ho Lai, Ming-Yen Lu, Lih-Juann Chen, J. Mater. Chem. 22, 19 (2012), and references there inCrossRefGoogle Scholar
  5. 5.
    A. Nabavi, S. Goroshin, D.L. Frost, F. Barthelat, J. Mater. Sci. 50, 3434 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    P. Raybaud, G. Kresse, J. Hafner, H. Toulhoat, J. Phys.: Condens. Matter 9, 11085 (1997)ADSGoogle Scholar
  7. 7.
    P. Raybaud, J. Hafner, G. Kresse, H. Toulhoat, J. Phys.: Condens. Matter 9, 11107 (1997)ADSGoogle Scholar
  8. 8.
    D. Hobbs, J. Hafner, J. Phys.: Condens. Matter 11, 8197 (1999)ADSGoogle Scholar
  9. 9.
    A. Rohrbach, J. Hafner, G. Kresse, J. Phys.: Condens. Matter 15, 979 (2003)ADSGoogle Scholar
  10. 10.
    J.A. Wilson, A.D. Yoffe, Adv. Phys. 18, 193 (1969)ADSCrossRefGoogle Scholar
  11. 11.
    R. Huisman, R. de Jounge, C. Hass, F. Jellinek, J. Solid State Chem. 3, 56 (1971)ADSCrossRefGoogle Scholar
  12. 12.
    L.F. Mattheis, Phys. Rev. B 8, 3719 (1973)ADSCrossRefGoogle Scholar
  13. 13.
    F.W. Payne, Wei Jiang, L.A. Bloomfield, Phys. Rev. Lett. 97, 193401 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    D.C. Douglass, J.P. Bucher, L.A. Bloomfield, Phys. Rev. B 45, 6341 (1992)ADSCrossRefGoogle Scholar
  15. 15.
    E. Janssens, X.J. Hou, S. Neukermans, X. Wang, R.E. Silverans, P. Lievens, M.T. Nguyen, J. Phys. Chem. A 111, 4150 (2007)CrossRefGoogle Scholar
  16. 16.
    G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)ADSCrossRefGoogle Scholar
  17. 17.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    P. Ruiz-Díaz, J.L. Ricardo-Chávez, J. Dorantes-Dávila, G.M. Pastor, Phys. Rev. B 81, 224431 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    E. Polak, in Computational Methods in Optimization: A Unified Approach (Academic Press, New York, 1971)Google Scholar
  22. 22.
    R.F.W. Bader, in Atoms in Molecules. A Quantum Theory (Clarendon, Oxford, 1990)Google Scholar
  23. 23.
    G. Henkelman, A. Arnaldsson, H. Jónsson, Comput. Mater. Sci. 36, 354 (2006)CrossRefGoogle Scholar
  24. 24.
    V.E. Bondybey, J.H. English, Chem. Phys. Lett. 94, 443 (1983)ADSCrossRefGoogle Scholar
  25. 25.
    S.M. Casey, D.G. Leopold, J. Phys. Chem. 97, 816 (1993)CrossRefGoogle Scholar
  26. 26.
    D.L. Michalopoulos, M.E. Geusic, S.G. Hansen, D.E. Powers, R.E. Smalley, J. Phys. Chem. 86, 3914 (1982)CrossRefGoogle Scholar
  27. 27.
    K. Hilpert, K. Ruthardt, Ber. Bunsenges, Phys. Chem. 91, 724 (1987)CrossRefGoogle Scholar
  28. 28.
    C.X. Su, D.A. Hales, P.B. Armentrout, Chem. Phys. Lett. 201, 199 (1993)ADSCrossRefGoogle Scholar
  29. 29.
    B. Simard, M.-A. Lebeault-Dorget, A. Marijnissen, J.J. ter Meulen, J. Chem. Phys. 108, 9668 (1998)ADSCrossRefGoogle Scholar
  30. 30.
    D.P. DiLella, W. Limm, R.H. Lipson, M. Moskovits, K.V. Taylor, J. Chem. Phys. 77, 6263 (1982)CrossRefGoogle Scholar
  31. 31.
    Q. Wang, Q. Sun, B.K. Rao, P. Jenna, Y. Kawasoe, J. Chem. Phys. 119, 7124 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    N. Gonzalez Szwacki, J.A. Majewski, T. Dietl, Phys. Rev. B 83, 184417 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    M.D. Morse, Chem. Rev. 86, 1049 (1986)CrossRefGoogle Scholar
  34. 34.
    K. Andersson, Chem. Phys. Lett. 245, 215 (1995)ADSCrossRefGoogle Scholar
  35. 35.
    E.J. Thomas III, J.S. Murray, C.J. O’Connor, P. Politzer, J. Mol. Struct: Theochem 487, 177 (1999)CrossRefGoogle Scholar
  36. 36.
    M. Brynda, L. Gagliardi, B.O. Roos, Chem. Phys. Lett. 471, 1 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    T. Müller, J. Phys. Chem. A 113, 12729 (2009)CrossRefGoogle Scholar
  38. 38.
    N. Vaidya, Indian J. Pure Appl. Phys. 14, 600 (1976)Google Scholar
  39. 39.
    M.M. Goodname, W.A. Goddard III, Phys. Rev. Lett. 48, 135 (1982)ADSCrossRefGoogle Scholar
  40. 40.
    B. Delley, A.J. Freeman, D.E. Ellis, Phys. Rev. Lett. 50, 488 (1983)ADSCrossRefGoogle Scholar
  41. 41.
    C.W. Bauschlicher Jr., H. Patridge, Chem. Phys. Lett. 231, 277 (1994)ADSCrossRefGoogle Scholar
  42. 42.
    H. Cheng, L.-S. Wang, Phys. Rev. Lett. 77, 51 (1996)ADSCrossRefGoogle Scholar
  43. 43.
    R. Kondo, R. Sekine, J. Onoe, H. Nakamatsu, J. Surf. Sci. Soc. Jpn. 21, 462 (2000)CrossRefGoogle Scholar
  44. 44.
    B.V. Reddy, S.N. Khanna, P. Jenna, Phys. Rev. B 60, 15597 (1999)ADSCrossRefGoogle Scholar
  45. 45.
    J.I. Martínez, J.A. Alonso, Phys. Rev. B 76, 205409 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    N. Desmarais, F.A. Reuse, S.A. Khana, J. Chem. Phys. 112, 5576 (2000)ADSCrossRefGoogle Scholar
  47. 47.
    P. Celani, H. Stoll, H.-J. Werner, P.J. Knowles, Mol. Phys. 102, 2369 (2004)ADSCrossRefGoogle Scholar
  48. 48.
    S.R. Langhoff, C.W. Bauschlicher Jr., Ann. Rev. Phys. Chem. 39, 181 (1988)ADSCrossRefGoogle Scholar
  49. 49.
    D.R. Salahub, Adv. Chem. Phys. 69, 447 (1987)Google Scholar
  50. 50.
    C. Kohl, G.F. Bertsch, Phys. Rev. B 60, 4205 (1999)ADSCrossRefGoogle Scholar
  51. 51.
    J.E. Peralta, G.E. Scuseria, M.J. Frisch, Phys. Rev. B 75, 125119 (2007)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Laboratoire de Physique et Chimie Quantique, Faculté des Sciences, Université Mouloud Mammeri de Tizi-OuzouTizi-OuzouAlgeria
  2. 2.Departamento de Física Teórica, Atómica y Óptica, Universidad de ValladolidValladolidSpain

Personalised recommendations