Asymmetric frequency dependence of plasma jet formation in resonator electrode

  • Woo Jin Nam
  • Seung Taek Lee
  • Seok Yong Jeong
  • Jae Koo Lee
  • Gunsu S. YunEmail author
Regular Article


Large aspect ratio plasma jets with sub-mm diameter are produced by a microwave coaxial resonator electrode. The jet length shows a sharp asymmetric dependence on the drive frequency: the plasma jet suddenly turns off below a critical frequency while the jet length slowly decreases above the frequency. A general mechanism is proposed to explain the asymmetry based on a universal feedback relation among the plasma impedance, the power coupling efficiency and the plasma dimension in resonator type electrodes. The input impedance of the resonator electrode changes depending on the plasma size formed in the electrode. The degree of the impedance mismatch between the electrode-plasma and the power source determines the power coupling efficiency and the resistive loss in the electrode which in turn affects the plasma size. The asymmetric dependence on the drive frequency is a consequence of the fact that the resonance frequency decreases for increasing plasma size. The feedback model shows a good agreement with the experimental measurements, providing essential information for the plasma control.

Graphical abstract


Plasma Physics 


  1. 1.
    B. Sera, V. Stranak, M. Sery, M. Tichy, P. Spatenka, Plasma Sources Sci. Technol. 10, 506 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    A. Kramer, S. Bekeschus, R. Matthes, C. Bender, M. B. Stope, M. Napp, O. Lademann, J. Lademann, K. Weltmann, F. Schauer, Plasma Process. Polym. 12, 1410 (2015)CrossRefGoogle Scholar
  3. 3.
    D. Vollath, J. Nanopart. Res. 10, 39 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    S.P. Kuo, S. Popovic, O. Tarasenko, M. Rubinraut, M. Raskovic, Plasma Sources Sci. Technol. 16, 581 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    X. Lu, G.V. Naidis, M. Laroussi, S. Reuter, D.B. Graves, K. Ostrikov, Phys. Rep. 630, 1 (2016)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    D.B. Graves, Phys. Plasmas 21, 080901 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    B.J. Park, D.H. Lee, J.C. Park, I.S. Lee, K.Y. Lee, S.O. Hyun, M.S. Chun, K.H. Chung, Phys. Plasmas 10, 4539 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    H.S. Uhm, S.C. Cho, Y.C. Hong, Y.G. Park, J.S. Park, Appl. Phys. Lett. 92, 071503 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    F. Iza, J. Hopwood, Plasma Sources Sci. Technol. 14, 397 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    J. Choi, F. Iza, H.J. Do, J.K. Lee, M.H. Cho, Plasma Sources Sci. Technol. 18, 025029 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    S.K. Kang, Y.S. Seo, H.W. Lee, Aman-ur-Rehman, G.C. Kim, J.K. Lee, J. Phys. D: Appl. Phys. 44, 435201 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    R.P. Cardoso, T. Belmonte, P. Keravec, F. Kosior, G. Henrion, J. Phys. D 40, 1394 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    R. Bussiahn, R. Gesche, S. Kühn, K.D. Weltmann, Plasma Sources Sci. Technol. 21, 065011 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    H.C. Kwon, I.H. Won, J.K. Lee, Appl. Phys. Lett. 100, 183702 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    C. Tendero, C. Tixier, P. Tristant, J. Desmaison, P. Leprince, Spectrochim. Acta B 61, 2 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    X. Lu, M. Laroussi, V. Puech, Plasma Sources Sci. Technol. 21, 034005 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    S.T. Lee, W.J. Nam, J.K. Lee, G.S. Yun, Plasma Sources Sci. Technol. 26, 045004 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    D.M. Pozar, Microwave Engineering, 4th edn. (Wiley, 2012)Google Scholar
  19. 19.
    H.W. Lee, M.S. Kim, I.H. Won, G.S. Yun, J.K. Lee, J. Phys. D: Appl. Phys. 48, 155203 (2015)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Woo Jin Nam
    • 1
    • 2
  • Seung Taek Lee
    • 1
    • 2
  • Seok Yong Jeong
    • 1
  • Jae Koo Lee
    • 3
  • Gunsu S. Yun
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of PhysicsPohang University of Science and TechnologyPohangRepublic of Korea
  2. 2.Center for Attosecond Science, Max Planck-POSTECH/KoreaPohangRepublic of Korea
  3. 3.Division of Advanced Nuclear Engineering, Pohang University of Science and TechnologyPohangRepublic of Korea

Personalised recommendations