Mechanism of potential barrier photomodulation in nanocrystalline CdS films*

Regular Article
Part of the following topical collections:
  1. Topical Issue: Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces


The effect of photocurrent limiting has been observed for the pyrolitic CdS films, both pure and Li-doped. In the view of the polycrystallinity of the studied objects, the behaviour of nonequilibrium charge carriers are explained by the surface-barrier mechanism of the current transfer. At that the effect of the photocurrent limiting is due to the photomodulation of potentional barriers for the drift and the recombination, which influence on mobility and lifetime of charge carriers. It has been obtained the theoretical dependences of mobility, conductivity and photocurrent on the modulation of the potential barrier under photoexcitation. It has been found that in its turn the photomodulation of the potentional barriers is described by hyperbolic function. The analysis of experimental dependences of photocurrent on the excitation intensity in the context of these notions allowed determining the average value of the biographic surface potential barrier for the drift and the recombination in polycrystalline structures. For the pyrolytic CdS and CdS:Li films it accounts 0.18 eV and 0.23 eV, respectively.

Graphical abstract


  1. 1.
    M.A. Jafapov, E.F. Nasirov, S.A. Mamedova, Semiconductors 48, 570 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    G.C. Morris, S.K. Das, P.G. Tanner, J. Cryst. Growth 117, 929 (1992)ADSCrossRefGoogle Scholar
  3. 3.
    G.F. Novikov, E.V. Rabenok, M.V. Gapanovitch, Semiconductors 44, 575 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    J. Luschitz, B. Siepchen, J. Schaffner, K. Lakus-Wollny, G. Haindl, A. Klein, W. Jaegermann, Thin Sol. Films 517, 2125 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    S.A. Gavrilov, A.A. Schertchenko, A.B. Apal’kov, D.A. Krabtchenko, Optoelectrical properties of CdS films for solar elements with thin absorbtion layer, Nanotechnologies in Russia 1, 228 (2006)Google Scholar
  6. 6.
    S.Yu. Pavelets, Yu.N. Bobrenko, A.V. Komashchenko, T.E. Shengeliya, Semiconductors 35, 605 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    T.V. Blank, Yu. A. Gol’dberg, Semiconductors 37, 999 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    B.N. Senik, Application of crystals in perspective development of hyperspectral optical systems, Appl. Phys. 3, 134 (2007), (in Russian)Google Scholar
  9. 9.
    T.L. Mayorova, V.G. Klyuev, A.I. Zvyagin, Nanotechnologies in Russia 10, 606 (2015)CrossRefGoogle Scholar
  10. 10.
    R.H. Bube, The photoconductivity of solids, edited by T.M. Livschits (The foreign literature publishing house, Moscow, 1962)Google Scholar
  11. 11.
    R. Baltramiejunas, Yu.Yu. Vaitkus, D. Veletskas, Yu. Viscakas, V. Grivitskas, Yu. Starosta, in collection: The problems of physics of AIIBIV compounds, edited by A.Yu. Schileyka (Publishing house of VSU, Vil’nyus, 1972), pp. 126–131Google Scholar
  12. 12.
    K. Heinz, F. Stockman, Physica Status Solidi A 20, 469 (1973)ADSCrossRefGoogle Scholar
  13. 13.
    A.V. Lubchenko, M.K. Sheinkman, V.E. Lashkarev, The Nonequilibrium processes in photoconductors, edited by I.V. Potykevich (Kiev, 1981)Google Scholar
  14. 14.
    Yu.Yu. Vaitkus, Yu.Yu. Mischkinis, Peculiarities of statonary photoconductance of nonactivated CdSe monocrystals, The Lithuanian Physical Collection 11, 667 (1971)Google Scholar
  15. 15.
    A.G. Guseĭnov, V.M. Salmanov, B.M. Mamedov, Semiconductors 40, 401 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    R. Baltramieju̅nas, A. Sakalas, J. Vaitkus, J. Vicščakas, Physica Status Solidi A 3, K277 (1970)ADSCrossRefGoogle Scholar
  17. 17.
    R. Baltramieju̅nas, V. Grivickas, J. Storasta, J. Vaitkus, Physica Status Solidi A 19, K115 (1973)ADSCrossRefGoogle Scholar
  18. 18.
    V.B. Bondarenko, S.N. Davydov, A.V. Filimonov, Semiconductors 44, 41 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    T.V. Samofalova, V.N. Semyenov, A.V. Naumov, A.M. Khoviv, A.N. Kharin, T.S. Lebedeva, Condensed Matter and Interphases 13, 4, 504 (2011)Google Scholar
  20. 20.
    M.N. Levin, G.V. Semenova, T.P. Sushkova, E.A. Dolgopolova, V.V. Postnikov, Tech. Phys. Lett. 28, 10, 818 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    R.L. Petritz, Phys. Rev. 104, 1508 (1956)ADSCrossRefGoogle Scholar
  22. 22.
    J.C. Slater, Phys. Rev. 103, 6, 1631 (1956)ADSCrossRefGoogle Scholar
  23. 23.
    M.K. Scheinkman, I.V. Markevitch, V.A. Chvostov, Model of residual conductance in semiconductors and its characteristics in CdS:Ag:Cl, Soviet Physics Semiconductors 5, 10, 1904 (1971)Google Scholar
  24. 24.
    T.L. Maiorova, V.G. Klyuev, Semiconductors 43, 292 (2009)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Tatiana Mayorova
    • 1
  • Victor Klyuev
    • 2
  • Andrey Zvyagin
    • 2
  1. 1.Military Educational and Scientific Center of the Air Force “N.E. Zhukovsky and Yu.A. Gagarin Air Force Academy”VoronezhRussia
  2. 2.Department of PhysicsVoronezh State University, Universitetskaya sq. 1VoronezhRussia

Personalised recommendations