Effects of weakly coupled and dense quantum plasmas environments on charge exchange and ionization processes in Na+ + Rb(5s) atom collisions

Regular Article

Abstract

The effects of weakly coupled or classical and dense quantum plasmas environment on charge exchange and ionization processes in Na+ + Rb(5s) atom collision at keV energy range have been investigated using classical trajectory Monte Carlo (CTMC) method. The interaction of three charged particles are described by the Debye-Hückel screen potential for weakly coupled plasma, whereas exponential cosine-screened Coulomb potential have been used for dense quantum plasma environment and the effects of both conditions on the cross sections are compared. It is found that screening effects on cross sections in high Debye length condition is quite small in both plasma environments. However, enhanced screening effects on cross sections are observed in dense quantum plasmas for low Debye length condition, which becomes more effective while decreasing the Debye length. Also, we have found that our calculated results for plasma-free case are comparable with the available theoretical results. These results are analyzed in light of available theoretical data with the choice of model potentials.

Graphical abstract

Keywords

Plasma Physics 

References

  1. 1.
    L.L. Yan, L. Liu, Y. Wu, Y.Z. Qu, J.G. Wang, R.J. Buenker, Phys. Rev. A 88, 012709 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    T.G. Lee, H. Nguyen, X. Flechard, B.D. DePaola, C.D. Lin, Phys. Rev. A 66, 042701 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    X. Flechard, H. Nguyen, R. Bredy, S.R. Lundeen, M. Stauffer, H.A. Camp, C.W. Fehrenbach, B.D. DePaola, Phys. Rev. Lett. 91, 243005 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    J. Blieck, X. Fléchard, A. Cassimi, H. Gilles, S. Girard, D. Hennecart, Rev. Sci. Instrum. 79, 103102 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    D. Dowek, I. Reiser, S. Grego, N. Andersen, A. Dubois, J.C. Houver, S.E. Nielsen, C. Richter, J. Salgado, A. Svensson, J.W. Thomsen, J. Phys. B 35, 2051 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    H.W. Li, S. Kar, Eur. Phys. J. D 66, 304 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Arka Bhattacharya, M.Z.M. Kamali, Arijit Ghoshal, K. Ratnavelu, Phys. Plasmas 20, 083514 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Subhrangsu Sen, Puspajit Mandal, Prasanta Kumar Mukherjee, Burkhard Fricke, Phys. Plasmas 20, 013505 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Sabyasachi Kar, H.W. Li, Pinghui Jiang, Phys. Plasmas 20, 083302 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Sabyasachi Kar, Yu-Shu Wang, Wei-Qi Li, Xiu-Dong Sun, Int. J. Quantum Chem. 115, 1573 (2015)CrossRefGoogle Scholar
  11. 11.
    S. Kar, Y. Wang, Z. Jiang, S. Li, K. Ratnavelu, Phys. Plasmas 21, 012105 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Sabyasachi Kar, Hua-Wei Li, Zuo-Chun Shen, Cent. Eur. J. Phys. 11, 915 (2013)Google Scholar
  13. 13.
    H.W. Li, S. Kar, Phys. Plasmas 19, 073303 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    A. Ghoshal, M.Z.M. Kamali, K. Ratnavelu, Phys. Plasmas 20, 013506 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Xiao-Qing Hu, Yang Wang, Zishi Jiang, Pinghui Jiang, Sabyasachi Kar, Phys. Plasmas 22, 112107 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Pramit Rej, Arijit Ghoshal, Phys. Plasmas 21, 093507 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Pramit Rej, Arijit Ghoshal, J. Phys. B 49, 125203 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Avijit Ghosh, Debasis Ray, Phys. Plasmas 22, 032707 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Kura Ratnavelu, Arijit Ghoshal, Sujay Nayek, Eur. Phys. J. D 704, 80 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    M.K. Pandey, Y.-C. Lin, Y.K. Ho, J. Phys. B 49, 034007 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    M.K. Pandey, Y.-C. Lin, Y.K. Ho, Phys. Plasmas 22, 052104 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    M.K. Pandey, Y.-C. Lin, Y.K. Ho, Phys. Plasmas 20, 022104 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    M.K. Pandey, Y.-C. Lin, Y.K. Ho, Phys. Plasmas 19, 062104 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Wu, J.G. Wang, P.S. Krstic, R.K. Janev, J. Phys. B 43, 201003 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    D. Jakimovski, L. Liu, J.G. Wang, R.K. Janev, J. Phys. B 43, 165202 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Y.Q. Zhao, L. Liu, J.G. Wang, R.K. Janev, P. Xue, Phys. Rev. A 82, 22701 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Li Guang Jiao, Yew Kam Ho, Phys. Rev. A 90, 012521 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    T.N. Chang, T.K. Fang, Y.K. Ho, Phys. Plasmas 20, 092110 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    L.G. Jiao, Y.K. Ho, Phys. Plasmas 20, 083303 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Ye Ning, Zong-Chao Yan, Yew Kam Ho, Phys. Plasmas 22, 013302 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    Hongwei Hu, Yongtao Zhao, Zhen Li, Fuli Li, Chenzhong Dong, Xianming Zhou, Wencong Chen, Peng Li, Phys. Plasmas 21, 122113 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    Gyeong Won Lee, Young-Dae Jung, Phys. Plasmas 21, 092704 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    Woo-Pyo Hong, Young-Dae Jung, Phys. Plasmas 22, 012701 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    A. Poszwa, M.K. Bahar, Phys. Plasmas 22, 012104 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    Yen-Chang Lin, Te-Kuei Fang, Yew Kam Ho, Phys. Plasmas 22, 032113 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    Madhab De, Debasis Ray, Phys. Plasmas 22, 054503 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    Ling-yu Zhang, Xiao-ying Zhao, Jiang-feng Wan, Guo-qing Xiao, Wen-shan Duan, Xin Qi, Lei Yang, Phys. Plasmas 21, 093302 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    L. Zhang, X. Qi, X. Zhao, X. Zhang, G. Xiao, W. Duan, L. Yang, Phys. Scr. 89, 085402 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    Pramit Rej, Arijit Ghoshal, Phys. Plasmas 21, 113509 (2014)CrossRefGoogle Scholar
  40. 40.
    Yue-Ying Qi, Li-Na Ning, Phys. Plasmas 21, 033301 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    T. Ramazanov, K. Galiyev, K.N. Dzhumagulova, G. Ropke, R. Redmer, Contrib. Plasma Phys. 43, 39 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    M. Marklund, P.K. Shukla, Rev. Mod. Phys. 78, 218 (2006)CrossRefGoogle Scholar
  43. 43.
    S.-C. Na, Y.-D. Jung, Phys. Lett. A 372, 5605 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    S.-C. Na, Y.-D. Jung, Phys. Scr. 78, 035502 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    P.K. Shukla, B. Eliasson, Phys. Lett. A 372, 2897 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    R. Abrines, I.C. Percival, Proc. Phys. Soc. 88, 861 (1966)ADSCrossRefGoogle Scholar
  47. 47.
    R.E. Olson, A. Salop, Phys. Rev. A 16, 531 (1977)ADSCrossRefGoogle Scholar
  48. 48.
    M.K. Pandey, D.N. Tripathi, Eur. Phys. J. D 45, 273 (2007)ADSCrossRefGoogle Scholar
  49. 49.
    M.K. Pandey, R.K. Dubey, D.N. Tripathi, Eur. Phys. J. D 45, 273 (2007)ADSCrossRefGoogle Scholar
  50. 50.
    M.K. Pandey, Y.K. Ho, Nucl. Instrum. Meth. B 271, 39 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    M.K. Pandey, R.K. Dubey, D.N. Tripathi, Eur. Phys. J. D 41, 275 (2007)ADSCrossRefGoogle Scholar
  52. 52.
    M.K. Pandey, Y.-C. Lin, Y.K. Ho, Chin. J. Phys. 51, 1192 (2013)Google Scholar
  53. 53.
    M.K. Pandey, Y.-C. Lin, Y.K. Ho, Chin. J. Phys. 54, 175 (2016)CrossRefGoogle Scholar
  54. 54.
    T.N. Chang, in Many-body Theory of Atomic Structure and Photoionization, edited by T.N. Chang (World Scientific, Singapore, 1993), p. 213Google Scholar
  55. 55.
    F.J. Rogers, H.C. Graboske, D.J. Harwood, Phys. Rev. A 1, 1577 (1970)ADSCrossRefGoogle Scholar
  56. 56.
    N. Ullah, Phys. Rev. A 36, 4176 (1987)ADSCrossRefGoogle Scholar
  57. 57.
    Y.Y. Qi, J.G. Wang, R.K. Janev, Phys. Rev. A 80, 063404 (2009)ADSCrossRefGoogle Scholar
  58. 58.
    R.L. Becker, A.D. MacKellar, J. Phys. B 17, 3923 (1984)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Mukesh Kumar Pandey
    • 1
    • 2
  • Yen-Chang Lin
    • 1
  • Yew Kam Ho
    • 1
  1. 1.Institute of Atomic and Molecular Sciences, Academia SinicaTaipeiTaiwan
  2. 2.Department of PhysicsNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations