Cross sections for state-selective electron capture and excitation in He+–H collisions

  • Ling Liu
  • Xiaohe Lin
  • Yong Wu
  • Jian-Guo Wang
  • Ratko K. Janev
Regular Article
  • 15 Downloads

Abstract

Electron-capture and excitation processes in He+ +H collisions have been studied by using the full quantum-mechanical molecular orbital close-coupling (QMOCC) and the two-center atomic orbital close-coupling (TC-AOCC) methods in the energy ranges 10-2–5 keV/u and 0.1–100 keV/u, respectively. The spin-selected state-selective cross sections for these processes in the He+ +H collision system are reported for the first time. The spin-averaged total electron capture and excitation cross sections, as well as the emission cross section for Balmer α radiation, are compared with the results of available experimental and previous theoretical results in the overlapping energy ranges.

Graphical abstract

Keywords

Atomic and Molecular Collisions 

References

  1. 1.
    A. Laorte, B. Lipschultz, A.S. Kukushkin et al., Nucl. Fusion 47, S203 (2007)CrossRefGoogle Scholar
  2. 2.
    D. Reiter, M. Baeva, O. Marchuk, R.K. Janev, in Atomic and molecular data and their applications, edited by T. Kato et al., AIP Conf. Proc. Ser. 771, 3 (2006)Google Scholar
  3. 3.
    R.E. Olson, A. Salop, R.A. Phaneuf, F.W. Meyer, Phys. Rev. A 16, 1867 (1977)ADSCrossRefGoogle Scholar
  4. 4.
    M.B. Shah, H.B. Gilbody, quoted as private communication in reference [12] belowGoogle Scholar
  5. 5.
    J.D.A. McKee, J.R. Sheridan, J. Geddes, H.B. Gilbody, J. Phys. B: At. Mol. Phys. 10, 1679 (1977)ADSCrossRefGoogle Scholar
  6. 6.
    J.E. Aldag, J.L. Peacher, P.J. Martin, V.C. Sutcliffe, J.M. Geroge, E. Reed, T.J. Kvale, D.M. Blankenship, J.T. Park, Phys. Rev. A 23, 1062 (1981)ADSCrossRefGoogle Scholar
  7. 7.
    J. Geddes, A. Donnelly, M.P. Hughes, D.P. Higgins, H.B. Gilbody, J. Phys. B: At. Mol. Opt. Phys. 27, 3037 (1994)ADSCrossRefGoogle Scholar
  8. 8.
    A. Donnelly, G. Geddes, H.B. Gilbody, J. Phys. B: At. Mol. Opt. Phys. 24, 165 (1991)ADSCrossRefGoogle Scholar
  9. 9.
    D. Jackson, H.A. Slim, B.H. Bransden, D.R. Flower, J. Phys. B 25, L127 (1992)ADSCrossRefGoogle Scholar
  10. 10.
    A.M. Ermolaev, D. Jackson, N. Shimakura, T. Watanabe, J. Phys. B 27, 4991 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    J. Kuang, Z. Chen, C.D. Lin, J. Phys. B 28, 2173 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    I. Mancev, Phys. Rev. A 75, 052716 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    A. Macías, A. Riera, M. Yáñez, Phys. Rev. A 27, 213 (1983)ADSCrossRefGoogle Scholar
  14. 14.
    L.F. Errea, L. Méndez, A. Riera, Z. Phys. D 14, 229 (1989)ADSCrossRefGoogle Scholar
  15. 15.
    B. Zygelman, D.L. Cooper, M.J. Ford, A. Dalgarno, J. Gerratt, M. Raimondi, Phys. Rev. A 46, 3846 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    T.G. Heil, S.E. Bulter, A. Dalgarno, Phys. Rev. A 23, 1100 (1981)ADSCrossRefGoogle Scholar
  17. 17.
    B.R. Johnson, J. Comput. Phys. 13, 445 (1973)ADSCrossRefGoogle Scholar
  18. 18.
    L.F. Errea, L. Mendez, A. Riera, J. Phys. B 15, 101 (1982)ADSCrossRefGoogle Scholar
  19. 19.
    R.J. Buenker, R.A. Phillips, J. Mol. Struct. Theochem. 123, 291 (1985)CrossRefGoogle Scholar
  20. 20.
    S. Krebs, R.J. Buenker, J. Chem. Phys. 103, 5613 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    T.H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989)ADSCrossRefGoogle Scholar
  22. 22.
    G. Hirsch, P.J. Bruna, R.J. Buenker, S.D. Peyerimhoff, Chem. Phys. 45, 335 (1980)ADSCrossRefGoogle Scholar
  23. 23.
    Yu. Ralchenko, A.E. Kramida, J. Reader, NIST ASD Team, NIST Atomic Spectra Database 35, R57 (2002) version 3.1.5, 2008, http://physics.nist.gov/asd3
  24. 24.
    M. Jungen, Ch. Jungen, Mol. Phys. 113, 2333 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    J. Loreau, J. Lievin, P. Palmeri, P. Quinet, N. Vaeck, J. Phys. B 43, 065101 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    J. Loreau, K. Sodoga, D. Lauvergnat, M. Desouter-Lecomte, N. Vaeck, Phys. Rev. A 82, 012708 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    J. Loreau, S. Ryabchenko, A. Dalgarno, N. Vaeck, Phys. Rev. A 84, 052720 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    J. Loreau, S. Ryabchenko, N. Vaeck, J. Phys. B 47, 135204 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    W. Kolos, Int. J. Quantum Chem. X, 217 (1976)CrossRefGoogle Scholar
  30. 30.
    W. Kolos, J.M. Peek, Chem. Phys. 12, 381 (1976)ADSCrossRefGoogle Scholar
  31. 31.
    W. Kolos, B. Jeziorski, K. Szalewicz, H.J. Monkhorst, Phys. Rev. A 31, 551 (1985)ADSCrossRefGoogle Scholar
  32. 32.
    W. Fritsch, C.D. Lin, Phys. Rep. 202, 1 (1991)ADSCrossRefGoogle Scholar
  33. 33.
    J. Kuang, C.D. Lin, J. Phys. B 30, 101 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    C.M. Reeves, J. Chem. Phys. 39, 1 (1963)ADSCrossRefGoogle Scholar
  35. 35.
    C. Bottcher, J. Phys. B 4, 1140 (1971)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Ling Liu
    • 1
  • Xiaohe Lin
    • 2
  • Yong Wu
    • 1
  • Jian-Guo Wang
    • 1
  • Ratko K. Janev
    • 3
  1. 1.Data Center for High Energy Density Physics, Institute of Applied Physics and Computational MathematicsBeijingP.R. China
  2. 2.School of Physics, Beijing Institute of TechnologyBeijingP.R. China
  3. 3.Macedonian Academy of Sciences and ArtsSkopjeMacedonia

Personalised recommendations