Spontaneous spherical symmetry breaking in atomic confinement

Regular Article
  • 44 Downloads

Abstract

The effect of spontaneous breaking of initial SO(3) symmetry is shown to be possible for an H-like atom in the ground state, when it is confined in a spherical box under general boundary conditions of “not going out” through the box surface (i.e. third kind or Robin’s ones), for a wide range of physically reasonable values of system parameters. The most novel and nontrivial result, which has not been reported previously, is that such an effect takes place not only for attractive, but also for repulsive interactions of atomic electrons with the cavity environment. Moreover, in the limit of a large box size Ra B the regime of an atom, soaring over a plane with boundary condition of “not going out”, is reproduced, rather than a spherically symmetric configuration, which would be expected on the basis of the initial SO(3) symmetry of the problem.

Graphical abstract

Keywords

Atomic Physics 

References

  1. 1.
    W. Jaskolski, Phys. Rep. 271, 1 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    V.K. Dolmatov, A.S. Baltenkov, J.-P. Connerade, S. Manson, Rad. Phys. Chem. 70, 417 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    J.R. Sabin, E.J. Brandas, Adv. Quant. Chem. (Elsevier, Amsterdam, 2009), Vols. 57–58Google Scholar
  4. 4.
    K.D. Sen, in Electronic Structure of Quantum Conned Atoms and Molecules, edited by K.D. Sen (Springer, Berlin, 2014)Google Scholar
  5. 5.
    J.-P. Connerade, V.K. Dolmatov, P.A. Lakshmi, S. Manson, J. Phys. B: At. Mol. Opt. Phys. 32, L239 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    J.-P. Connerade, V.K. Dolmatov, S. Manson, J. Phys. B: At. Mol. Opt. Phys. 32, L395 (1999)CrossRefGoogle Scholar
  7. 7.
    J.-P. Connerade, V.K. Dolmatov, S. Manson, J. Phys. B: At. Mol. Opt. Phys. 33, 2279 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    T. Sako, G.H.F. Diercksen, J. Phys. B: At. Mol. Opt. Phys. 36, 1433 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    T. Sako, G.H.F. Diercksen, J. Phys. B: At. Mol. Opt. Phys. 36, 1681 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    H. Maris, J. Phys. Soc. Jpn 77, 111008 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    M.Ya. Amusia, L.V. Chernysheva, E.Z. Liverts, Phys. Rev. A 85, 042722 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    M.Ya. Amusia, L.V. Chernysheva, E.Z. Liverts, Int. J. Quant. Chem. 112, 3119 (2012)CrossRefGoogle Scholar
  13. 13.
    A.V. Solov’yov, Int. Conf. on Dynamics of Systems on the Nanoscale (Dyson, 2012), J. Phys.: Conf. Ser. 438 (2013)Google Scholar
  14. 14.
    A. Michels, J. de Boer, A. Bijl, Physica (Amsterdam) 4, 981 (1937)ADSCrossRefGoogle Scholar
  15. 15.
    A. Sommerfeld, H. Welker, Ann. Phys. 424, 56 (1938)CrossRefGoogle Scholar
  16. 16.
    E. Ley-Koo, Adv. Quant. Chem. 57, 79 (2009)CrossRefGoogle Scholar
  17. 17.
    N. Aquino, Adv. Quant. Chem. 57, 123 (2009)CrossRefGoogle Scholar
  18. 18.
    H.E. Montgomery, K.D. Sen, Phys. Lett. A 376, 1992 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    N. Aquino, A. Flores-Riveros, in Electronic Structure of Quantum Confined Atoms and Molecules, edited by K.D. Sen (Springer, Berlin, 2014)Google Scholar
  20. 20.
    V.I. Pupyshev, Russ. J. Phys. Chem. 74, 50 (2000)Google Scholar
  21. 21.
    K.D. Sen, V.I. Pupyshev, H.E. Montgomery, Adv. Quant. Chem. 57, 25 (2009)CrossRefGoogle Scholar
  22. 22.
    M.H. Al-Hashimi, U.-J. Wiese, Ann. Phys. 327, 1 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    M.H. Al-Hashimi, U.-J. Wiese, Ann. Phys. 327, 2742 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    K. Sveshnikov, A. Roenko, Phys. B 427, 118 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    V.I. Pupyshev, A.V. Scherbinin, in Electronic Structure of Quantum Confined Atoms and Molecules, edited by K.D. Sen (Springer, Berlin, 2014)Google Scholar
  26. 26.
    M.H. Al-Hashimi, A.M. Shalaby, U.-J. Wiese, Ann. Phys. 362, 621 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    V.N. Ostrovsky, J. Phys. B: At. Mol. Opt. Phys. 39, L367 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    E. Wigner, F. Seitz, Phys. Rev. 43, 804 (1933)ADSCrossRefGoogle Scholar
  29. 29.
    E. Wigner, F. Seitz, Phys. Rev. 46, 509 (1934)ADSCrossRefGoogle Scholar
  30. 30.
    G. Alefeld,J. Voelkl,in Hydrogen in Metals I. Basic Properties, edited by G. Alefeld, J. Voelkl (Springer, Berlin, 1978)Google Scholar
  31. 31.
    G. Alefeld,J. Voelkl, in Hydrogen in Metals II. Application-Oriented Properties, edited by G. Alefeld, J. Voelkl (Springer, Berlin, 1978)Google Scholar
  32. 32.
    Y. Fukai, The Metal-Hydrogen System, Basic Bulk Properties (Springer, Berlin, 1993)Google Scholar
  33. 33.
    R. Caputo, A. Alavi, Mol. Phys. 101, 1781 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn, V.F. Weisskopf, Phys. Rev. D 9, 3471 (1974)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    E.G. Maksimov, Yu.I. Shilov, Physics-Uspekhi 169, 1223 (1999)Google Scholar
  36. 36.
    H. Beytmen, A. Erdelyi, Higher Transcendental Functions (McGraw-Hill, NY, 1953), Vol. 1Google Scholar
  37. 37.
    R. Rajaraman, Solitons and Instantons (North-Holland, Amsterdam, 1982)Google Scholar
  38. 38.
    K. Sveshnikov, Phys. Lett. B 203, 283 (1988)ADSCrossRefGoogle Scholar
  39. 39.
    A. Dubikovsky, K. Sveshnikov, Phys. Lett. B 317, 589 (1993)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Physics and Institute of Theoretical Problems of MicroWorldMoscow State UniversityMoscowRussia

Personalised recommendations