Potential energy curves determination and relative properties of NaSr+ molecular ion for the ground and several excited states

  • Mouna Ben Hadj Ayed
  • Riadh Dardouri
  • Hanen Souissi
  • Khalid A. Alamry
  • Brahim Oujia
  • Florent Xavier Gadéa
Regular Article


This work is focused to studying the electronic properties of NaSr+ cationic molecule. In this calculation, ab initio approach has been used including pseudopotential model, effective core potentials (ECP), and a full configuration interaction (FCI). Then, the first 50 electronic states are easily investigated over a large interval ranging from 4 to 300 a.u. of internuclear distance. From these investigated states, molecular spectroscopic parameters (Te, De, Re and ωe) and vibrational levels as well as their spacing have been derived. Moreover, dipolar properties of the different symmetries (131Σ, 113Σ, 91,3Π and 41,3Δ) for several states are determined for the first time as function as internuclear distance. Spectroscopic constants are then compared with the unique available theoretical study that is only limited to the study of the first 11 electronic states. Good agreement was obtained. According to our knowledge, no experimental study of NaSr+ system was done until now. The present theoretical study is realized aiming to be the first step toward the formation of ultracold polar molecular ion.

Graphical abstract


Molecular Physics and Chemical Physics 


  1. 1.
    K.M. Jones, E. Tiesinga, P.D. Lett, P.S. Julienne, Rev. Mod. Phys. 78, 483 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    S.Y.T. van de Meerakker, N. Vanhaecke, M.P.J. van der Loo, G.C. Groenenboom, G. Meijer, Phys. Rev. Lett. 95, 013003 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    J.J. Gilijamse, S. Hoekstra, S.A. Meek, M. Metsala, S.Y.T. van de Meerakker, G. Meijer, G.C. Groenenboom, J. Chem. Phys. 127, 221102 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    Zhonghua Ji, Hongshan Zhang, Jizhou Wu, Jinpeng Yuan, Yonggang Yang, Yanting Zhao, Jie Ma, Lirong Wang, Liantuan Xiao, Suotang Jia, Phys. Rev. A 85, 013401 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    M.D. Swallows, M. Bishof, Y. Lin, S. Blatt, M.J. Martin, A.M. Rey, J. Ye, Science 331, 1043 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    R.V. Krems, Phys. Rev. Lett. 96, 123202 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    R.V. Krems, Int. Rev. Phys. Chem. 24, 99 (2005)CrossRefGoogle Scholar
  8. 8.
    A.V. Avdeenkov, M. Kajita, J.L. Bohn, Phys. Rev. A 73, 022707 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    E. Kuznetsova, T. Bragdon, R. Côté, S.F. Yelin, Phys. Rev. A 85, 012328 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    S.F. Yelin, K. Kirby, R. Côté, Phys. Rev. A 74, 050301 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    E.R. Hudson, H.J. Lewandowski, B.C. Sawyer, J. Ye, Phys. Rev. Lett. 96, 143004 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    M.A. Baranov, M. Dalmonte, G. Pupillo, P. Zoller, Chem. Rev. 112, 5012 (2012)CrossRefGoogle Scholar
  13. 13.
    O. Dulieu, M. Raoult, E. Tiemann, J. Phys. B 39, 19 (2006)CrossRefGoogle Scholar
  14. 14.
    Chang Xue-Fang, Ji Zhong-Hua, Yuan Jin-Peng, Zhao Yan-Ting, Yang Yong-Gang, Xiao Lian-Tuan, Jia Suo-Tang, Chin. Phys. B 22, 093701 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Sortais, S. Bize, M. Abgrall, S. Zhang, C. Nicolas, C. Mandache, P. Lemonde, P. Laurent, G. Santarelli, N. Dimarcq, P. Petit, A. Clairon, A. Mann, A. Luiten, S. Chang, C. Salomon, Physica Scripta T95, 50 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    D. Wang, J. Qi, M.F. Stone, O. Nikolayeva, H. Wang, B. Hattaway, S.D. Gensemer, P.L. Gould, E.E. Eyler, W.C. Stwalley, Phys. Rev. Lett. 93, 243005 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    K. Aikawa, D. Akamatsu, M. Hayashi, K. Oasa, J. Kobayashi, P. Naidon, T. Kishimoto, M. Ueda, S. Inouye, Phys. Rev. Lett. 105, 203001 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    P. Zabawa, A. Wakim, M. Haruza, N.P. Bigelow, Phys. Rev. A 84, 061401 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, M. Weidemüller, Phys. Rev. Lett. 101, 133004 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    S. Dutta, D.S. Elliott, Y.P. Chen, Europhys. Lett. 104, 63001 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    N. Poli, R.E. Drullinger, G. Ferrari, J. Léonard, F. Sorrentino, G.M. Tino, Phys. Rev. A 71, 061403 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    X. Xu, T.H. Loftus, J.W. Dunn, C.H. Greene, J.L. Hall, A. Gallagher, J. Ye, Phys. Rev. Lett. 90, 193002 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    T.H. Loftus, T. Ido, A.D. Ludlow, M.M. Boyd, J. Ye, Phys. Rev. Lett. 93, 073003 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    I. Courtillot, A. Quessada, R.P. Kovacich, A. Brusch, D. Kolker, J.J. Zondy, G.D. Rovera, P. Lemonde, Phys. Rev. A 68, 030501 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    M. Takamoto, H. Katori, Phys. Rev. Lett. 91, 223001 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, G.M. Tino, Phys. Rev. Lett. 91, 243002 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    T. Ido, T.H. Loftus, M.M. Boyd, A.D. Ludlow, K.W. Holman, J. Ye, Phys. Rev. Lett. 94, 153001 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    A. Derevianko, S.G. Porsev, S. Kotochigova, E. Tiesinga, P.S. Julienne, Phys. Rev. Lett. 90, 063002 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    C. Kollath, M. Köhl, T. Giamarchi, Phys. Rev. A 76, 063602 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    W. Klemperer, Proc. Natl. Acad. Sci. USA 103, 12232 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    E. Herbst, T.J. Millar, in Low Temperatures and Cold Molecules, edited by I.W.M. Smith (World Scientific, Singapore, 2008), p. 1Google Scholar
  32. 32.
    N. Khemiri, R. Dardouri, B. Oujia, F.X. Gadéa, J. Phys. Chem. A 117, 8915 (2013)CrossRefGoogle Scholar
  33. 33.
    V.L. Ol’shevskii, N.G. Shchukina, I.E. Vasil’eva, Solar Phys. 24, 198 (2008)Google Scholar
  34. 34.
    P.S. Barklem, A.K. Belyaev, A. Spielfiedel, M. Guitou, A&A 541, A80 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    M.M. Boyd, A.D. Ludlow, S. Blatt, S.M. Foreman, T. Ido, T. Zelevinsky, J. Ye, Phys. Rev. Lett. 98, 083002 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    P. Lemonde, Eur. Phys. J. Special Topics 172, 81 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    F. Sorrentino, G. Ferrari, N. Poli, R. Drullinger, G.M. Tino, Mod. Phys. Lett. B 20, 1287 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    A.J. Daley, M.M. Boyd, J. Ye, P. Zoller, Phys. Rev. Lett. 101, 170504 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    A.V. Gorshkov, A.M. Rey, A.J. Daley, M.M. Boyd, J. Ye, P. Zoller, M.D. Lukin, Phys. Rev. Lett. 102, 110503 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    M. Hermele, V. Gurarie, A.M. Rey, Phys. Rev. Lett. 103, 135301 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    C.P. Koch, Phys. Rev. A 78, 063411 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    S. Kotochigova, T. Zelevinsky, J. Ye, Phys. Rev. A 79, 012504 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    M. Aymar, R. Guérout, O. Dulieu, J. Chem. Phys. 135, 064305 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    Ph. Durand, J.C. Barthelat, Theor. Chim. Acta 38, 283 (1975)CrossRefGoogle Scholar
  45. 45.
    J.C. Barthelat, Ph. Durand, Gazz. Chim. Ital. 108, 225 (1978)Google Scholar
  46. 46.
    M. Chaieb, H. Habli, L. Mejrissi, B. Oujia, F.X. Gadéa, J. Quan. Chim. 114, 731 (2014)CrossRefGoogle Scholar
  47. 47.
    R. Dardouri, H. Habli, B. Oujia, F.X. Gadéa, J. Chem. Phys. 399, 65 (2012)Google Scholar
  48. 48.
    H. Habli, H. Ghalla, B. Oujia, F.X. Gadéa, Eur. Phys. J. D 64, 5 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    L. Mejrissi, H. Habli, H. Ghalla, B. Oujia, F.X. Gadéa, J. Chem. Phys. 117, 5503 (2013)CrossRefGoogle Scholar
  50. 50.
    R. Dardouri, K. Issa, B. Oujia, F.X. Gadéa, Int. J. Quantum Chem. 112, 2724 (2012)CrossRefGoogle Scholar
  51. 51.
    N. Khelifi, B. Oujia, F.X. Gadéa, J. Chem. Phys. 116, 2879 (2002)ADSCrossRefGoogle Scholar
  52. 52.
    R. Dardouri, H. Habli, B. Oujia, F.X. Gadéa, J. Comp. Chem. 34, 2091 (2013)CrossRefGoogle Scholar
  53. 53.
    W. Zrafi, B.Oujia, F.X. Gadéa, J. Phys. B 39, 3815 (2006)ADSCrossRefGoogle Scholar
  54. 54.
    N. Khelifi, W. Zrafi, B. Oujia, F.X. Gadéa, Phys. Rev. A 65, 042513 (2002)ADSCrossRefGoogle Scholar
  55. 55.
    H. Habli, R. Dardouri, B. Oujia, F.X. Gadéa, J. Phys. Chem. A 115, 14045 (2011)CrossRefGoogle Scholar
  56. 56.
    N. Khelifi, R. Dardouri, O.M. Al-Dossarya, J. App. Spect. 78, 11 (2011)CrossRefGoogle Scholar
  57. 57.
    W. Gaied, H. Habli, B. Oujia, F.X. Gadéa, Eur. Phys. J. D 62, 371 (2011)ADSCrossRefGoogle Scholar
  58. 58.
    H. Habli, L. Mejrissi, N. Issaoui, S.J. Yaghmour, B. Oujia, F.X. Gadéa, Int. J. Quantum. Chem. 115, 172 (2015)CrossRefGoogle Scholar
  59. 59.
    N. Khelifi, R. Dardouri, O.M. Al-Dossary, B. Oujia, J. Russian Laser Res. 30, 172 (2009)CrossRefGoogle Scholar
  60. 60.
    H. Habli, L. Mejrissi, H. Ghalla, S.J. Yaghmour, B. Oujia, F.X. Gadéa, J. Molec. Phys. 114, 1568 (2016)ADSCrossRefGoogle Scholar
  61. 61.
    K. Abdessalem, L. Mejrissi, N. Issaoui, B. Oujia, F.X. Gadéa, J. Phys. Chem. A, 117, 8925 (2013)CrossRefGoogle Scholar
  62. 62.
    K. Issa, N. Issaoui, H. Ghalla, S.J. Yaghmour, A.M. Mahros, B. Oujia, J. Molec. Phys. 114, 118 (2015)ADSCrossRefGoogle Scholar
  63. 63.
    W. Gaied, B. Oujia, Int. J. Nanoparticules 3, 160 (2010)CrossRefGoogle Scholar
  64. 64.
    W. Muller, J. Flesch, W. Meyer, J. Chem. Phys. 80, 3297 (1984)ADSCrossRefGoogle Scholar
  65. 65.
    M. Faucrault, P. Millie, J. Daudey, J. Chem. Phys. 96, 1257 (1992)ADSCrossRefGoogle Scholar
  66. 66.
    A. Kramida, Yu Ralchenko, J. Reader, NIST ASD Team, NIST AtomicSpectra Database (ver. 5.1), [Online]. Accessible at: http://physics.nist.gov/asd (2013)
  67. 67.
    R. Guérout, M. Aymar, O. Dulieu, J. Phys. Rev. A 82, 042508 (2010)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Mouna Ben Hadj Ayed
    • 1
  • Riadh Dardouri
    • 1
  • Hanen Souissi
    • 1
  • Khalid A. Alamry
    • 2
  • Brahim Oujia
    • 2
  • Florent Xavier Gadéa
    • 3
  1. 1.Laboratoire de Physique Quantique, Faculté des Sciences de Monastir, Université de MonastirMonastirTunisia
  2. 2.University of Jeddah, Faculty of ScienceJeddahKingdom of Saudi Arabia
  3. 3.Laboratoire de Chimie et Physique Quantique, UMR5626 du CNRS, Université de ToulouseToulouse Cedex 4France

Personalised recommendations