Electronic energy loss of protons and deuterons in multi-walled carbon nanotubes

Abstract

Results of measurements of electronic energy loss for few keV protons and deuterons interacting with multi-walled carbon nanotubes are presented. Analyses of the energy loss distributions, for both type of ions, show a particular shape which is due to the cylindrical geometry of the nanotubes. These distributions can be explained in detail by a Monte Carlo simulation program that includes elastic and inelastic processes and the geometrical properties of the nanotubes. The electronic energy loss values obtained from this study are proportional to the ion velocity, but are lower than the corresponding values for amorphous carbon. This indicates that the ion-nanotube interaction is affected by the electronic and crystalline structure of the nanotubes. Comparisons with experimental values for different types of C targets and with recent theoretical calculations were also done.

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1.

    D.Y. Lee, C.Y. Shin, S.J. Yoon, H.Y. Lee, W. Lee, N.K. Shrestha, J.K. Lee, S.H. Han, Sci. Rep. 4, 3930 (2014)

    ADS  Article  Google Scholar 

  2. 2.

    E.V. Santiago, S.H. López, M.A. Camacho López, D.R. Contreras, R. Farías-Mancilla, S.G. Flores-Gallardo, Opt. Laser Technol. 84, 53 (2016)

    ADS  Article  Google Scholar 

  3. 3.

    C.P. Firme, P.R. Bandaru, Nanomedicine 6, 245 (2010)

    Article  Google Scholar 

  4. 4.

    H. He, L.A. Pham-Huy, P. Dramou, D. Xiao, P. Zuo, C. Pham-Huy, Biomed Res. Int. 2013, 578290 (2013)

    Google Scholar 

  5. 5.

    S. Pramanik, R. Konwarh, N. Barua, A.K. Buragohain, N. Karak, Biomater. Sci. 2, 192 (2014)

    Article  Google Scholar 

  6. 6.

    Z.L. Mišković, J. Phys. Conf. Ser. 133, 012011 (2008)

    Article  Google Scholar 

  7. 7.

    W.K. Hong, C. Lee, D. Nepal, K.E. Geckeler, K. Shin, T. Lee, Nanotechnology 17, 5675 (2006)

    ADS  Article  Google Scholar 

  8. 8.

    B. Khare, M. Meyyappan, M.H. Moore, P. Wilhite, H. Imanaka, B. Chen, Nano Lett. 3, 643 (2003)

    ADS  Article  Google Scholar 

  9. 9.

    V.A. Basiuk, K. Kobayashi, T. Kaneko, Y. Negishi, E.V. Basiuk, J.M. Saniger-Blesa, Nano Lett. 2, 789 (2002)

    ADS  Article  Google Scholar 

  10. 10.

    P.J. Boul, K. Turner, J. Li, M.X. Pulikkathara, R.C. Dwivedi, E.D. Sosa, Y. Lu, O.V. Kuznetsov, P. Moloney, R. Wilkins, M.J. O’Rourke, V.N. Khabashesku, S. Arepalli, L. Yowell, J. Phys. Chem. C 113, 14467 (2009)

    Article  Google Scholar 

  11. 11.

    A.V. Krasheninnikov, F. Banhart, Nat. Mater. 6, 723 (2007)

    ADS  Article  Google Scholar 

  12. 12.

    J.E. Valdés, C. Celedón, R. Segura, I. Abril, R. Garcia-Molina, C.D. Denton, N.R. Arista, P. Vargas, Carbon 52, 137 (2013)

    Article  Google Scholar 

  13. 13.

    C. Celedón, E.A. Sánchez, M.S. Moreno, N.R. Arista, J.D. Uribe, M. Mery, J.E. Valdés, P. Vargas, Phys. Rev. A 88, 012903 (2013)

    ADS  Article  Google Scholar 

  14. 14.

    R. Lavin, J.C. Denardin, J. Escrig, D. Altbir, A. Cortes, H. Gomez, J. Appl. Phys. 106, 103903 (2009)

    ADS  Article  Google Scholar 

  15. 15.

    A. Cortés, R. Lavín, J.C. Denardin, R.E. Marotti, E.A. Dalchiele, P. Valdivia, H. Gómez, J. Nanosci. Nanotechnol. 11, 3899 (2011)

    Article  Google Scholar 

  16. 16.

    D.K. Singh, P. Iyer, P. Giri, Diam. Relat. Mater. 19, 1281 (2010)

    ADS  Article  Google Scholar 

  17. 17.

    J. Eckardt, G. Lantschner, M. Jakas, V. Ponce, Nucl. Instrum. Methods Phys. Res. B 2, 168 (1984)

    ADS  Article  Google Scholar 

  18. 18.

    J.E. Valdés, G. Tamayo, G. Lantschner, J. Eckardt, N. Arista, Nucl. Instrum. Methods Phys. Res. B 73, 313 (1993)

    ADS  Article  Google Scholar 

  19. 19.

    P. Echenique, R. Nieminen, R. Ritchie, Solid State Commun. 37, 779 (1981)

    ADS  Article  Google Scholar 

  20. 20.

    M. Puska, R. Nieminen, Phys. Rev. B 27, 6121 (1983)

    ADS  Article  Google Scholar 

  21. 21.

    D. Isaacson, Compilation of r s values (Tech. rep., New York University, 1975)

  22. 22.

    P.M. Ajayan, S. Iijima, T. Ichihashi, Phys. Rev. B 47, 6859 (1993)

    ADS  Article  Google Scholar 

  23. 23.

    L.A. Bursill, P.A. Stadelmann, J.L. Peng, S. Prawer, Phys. Rev. B 49, 2882 (1994)

    ADS  Article  Google Scholar 

  24. 24.

    M. Kociak, L. Henrard, O. Stéphan, K. Suenaga, C. Colliex, Phys. Rev. B 61, 13936 (2000)

    ADS  Article  Google Scholar 

  25. 25.

    A. Seepujak, U. Bangert, A.J. Harvey, P.M.F.J. Costa, M.L.H. Green, Phys. Rev. B 74, 075402 (2006)

    ADS  Article  Google Scholar 

  26. 26.

    M. Upton, R. Klie, J. Hill, T. Gog, D. Casa, W. Ku, Y. Zhu, M. Sfeir, J. Misewich, G. Eres, D. Lowndes, Carbon 47, 162 (2009)

    Article  Google Scholar 

  27. 27.

    W. Möller, G. Pospiech, G. Schrieder, Nucl. Instrum. Methods 130, 265 (1975)

    ADS  Article  Google Scholar 

  28. 28.

    M. Famá, J. Eckardt, G. Lantschner, N. Arista, Phys. Rev. A 62, 062901 (2000)

    ADS  Article  Google Scholar 

  29. 29.

    M. Nastasi, J.W. Mayer, J.K. Hirvonen, Ion-Solid Interactions (Cambridge University Press, 1996)

  30. 30.

    E.D. Cantero, G.H. Lantschner, N.R. Arista, Eur. Phys. J. D 65, 397 (2011)

    ADS  Article  Google Scholar 

  31. 31.

    A. Ojanperä, A.V. Krasheninnikov, M. Puska, Phys. Rev. B 89, 035120 (2014)

    ADS  Article  Google Scholar 

  32. 32.

    J.D. Pearce, J. Appl. Phys. 52, 5056 (1981)

    ADS  Article  Google Scholar 

  33. 33.

    S.D. Softky, Phys. Rev. 123, 1685 (1961)

    ADS  Article  Google Scholar 

  34. 34.

    N. Sakamoto, H. Ogawa, N. Shiomi-Tsuda, Nucl. Instrum. Methods Phys. Res. B 115, 84 (1996)

    ADS  Article  Google Scholar 

  35. 35.

    W. Käferböck, W. Rössler, V. Necas, P. Bauer, M. Peñalba, E. Zarate, A. Arnau, Phys. Rev. B 55, 13275 (1997)

    ADS  Article  Google Scholar 

  36. 36.

    P. de Vera, I. Abril, R. Garcia-Molina, Appl. Radiat. Isot. 83, 122 (2014)

    Article  Google Scholar 

  37. 37.

    J.F. Ziegler, Nucl. Instrum. Methods Phys. Res. B 219-220, 1027 (2004)

    ADS  Article  Google Scholar 

  38. 38.

    E.P. Arkipov, Y.V. Gott, Soviet Phys. J. Exp. Theor. Phys. 29, 614 (1969)

    ADS  Google Scholar 

  39. 39.

    S.H. Overbury, P.F. Dittner, S. Datz, R.S. Thoe, Radiat. Eff. Defects Solids 41, 219 (1979)

    Article  Google Scholar 

  40. 40.

    H.H. Andersen, A. Csete, T. Ichioka, H. Knudsen, S.P. Møller, U.I. Uggerhøj, Nucl. Instrum. Methods Phys. Res. B 194, 217 (2002)

    ADS  Article  Google Scholar 

  41. 41.

    J.E. Valdés, G. Tamayo, G. Lantschner, J. Eckardt, N. Arista, Nucl. Instrum. Methods Phys. Res. B 73, 313 (1993)

    ADS  Article  Google Scholar 

  42. 42.

    E. Cantero, G. Lantschner, J. Eckardt, N. Arista, Phys. Rev. A 80, 032904 (2009)

    ADS  Article  Google Scholar 

  43. 43.

    S. Markin, D. Primetzhofer, M. Spitz, P. Bauer, Phys. Rev. B 80, 205105 (2009)

    ADS  Article  Google Scholar 

  44. 44.

    D. Goebl, D. Roth, P. Bauer, Phys. Rev. A 062903, 1 (2013)

    Google Scholar 

  45. 45.

    C.E. Celedón, E.A. Sánchez, L. Salazar Alarcón, J. Guimpel, A. Cortés, P. Vargas, Nucl. Instrum. Methods Phys. Res. B 360, 103 (2015)

    ADS  Article  Google Scholar 

  46. 46.

    S. Bubin, B. Wang, S. Pantelides, K. Varga, Phys. Rev. B 85, 235435 (2012)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carlos E. Celedón.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Celedón, C.E., Cortés, A., Sánchez, E.A. et al. Electronic energy loss of protons and deuterons in multi-walled carbon nanotubes. Eur. Phys. J. D 71, 64 (2017). https://doi.org/10.1140/epjd/e2017-70408-4

Download citation

Keywords

  • Atomic and Molecular Collisions