Skip to main content
Log in

Graphene loaded double ridge plasmon Terahertz waveguide

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this paper, a single-mode graphene loaded double ridge plasmon waveguide (GDRW) with long propagation length and strong mode confinement is proposed. The characteristics of the guided modes are investigated in detail, and tunable single-mode transmission with good performance can be realized either by changing the Fermi energy level or by optimizing the key structural parameters. High figures of merit and much lower crosstalk are obtained due to the dramatically suppressed interference between two parallel placed GDRWs, enabling thereby more tightly stacking in terahertz integrated circuits. Further investigation on fabrication errors, such as the horizontal misalignment of the two symmetric ridges, fabrication distortion of rectangular ridges, and variation of ridge tip curvature radius, indicates that the proposed structure has enough fabrication error tolerance. The results are greatly expected to facilitate the application of high-density terahertz integrated circuits.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.K. Gramotnev, S.I. Bozhevolnyi, Nat. Photon. 4, 83 (2010)

    Article  ADS  Google Scholar 

  2. J.B. Pendry, L. Martín-Moreno, F.J. García-Vidal, Science 305, 847 (2004)

    Article  ADS  Google Scholar 

  3. H.F. Ma, X. Shen, Q. Cheng, W.X. Jiang, T.J. Cui, Laser Photon. Rev. 8, 146 (2014)

    Article  Google Scholar 

  4. A. Kianinejad, Z.N. Chen, C.W. Qiu, IEEE Trans. Microw. Theory Tech. 63, 1817 (2015)

    Article  ADS  Google Scholar 

  5. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, Y.R. Shen, Science 320, 206 (2008)

    Article  ADS  Google Scholar 

  6. Y. Wu, B.C. Yao, A.Q. Zhang, Y.J. Rao, Z.G. Wang, Y. Cheng, Y. Gong, W. Zhang, Y.F. Chen, K.S. Chiang, Opt. Lett. 39, 1235 (2014)

    Article  ADS  Google Scholar 

  7. L. Wu, H.S. Chu, W.S. Koh, E.P. Li, Opt. Express 18, 14395 (2010)

    Article  ADS  Google Scholar 

  8. J. Zhao, X.H. Liu, W.B. Qiu, Y.H. Ma, Y.X. Huang, J.X. Wang, K. Qiang, J.Q. Pan, Opt. Express 22, 5754 (2014)

    Article  ADS  Google Scholar 

  9. T. Low, P. Avouris, ACS Nano 108, 1086 (2014)

    Article  Google Scholar 

  10. M. Jablan, H. Buljan, M. Soljačić, Phys. Rev. B 80, 245435 (2009)

    Article  ADS  Google Scholar 

  11. Y. Gao, G. Ren, B. Zhu, H. Liu, Y. Lian, S. Jian, Opt. Express 22, 24322 (2014)

    Article  ADS  Google Scholar 

  12. V. Ashkan, N. Engheta, Science 332, 1291 (2011)

    Article  ADS  Google Scholar 

  13. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F.H. Koppens, F.J. García de Abajo, ACS Nano 6, 431 (2011)

    Article  Google Scholar 

  14. E. Forati, G.W. Hanson, Appl. Phys. Lett. 103, 133104 (2013)

    Article  ADS  Google Scholar 

  15. Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, M.A. Pulickel, N. Peter, J.H. Naomi, F.J. García de Abajo, ACS Nano 7, 2388 (2013)

    Article  Google Scholar 

  16. J. Zheng, L. Yu, S. He, D. Dai, Sci. Rep. 5, 7987 (2015)

    Article  ADS  Google Scholar 

  17. J. Kotakoski, D. Santos-Cottin, A.V. Krasheninnikov, ACS Nano 6, 671 (2011)

    Article  Google Scholar 

  18. G.W. Hanson, J. Appl. Phys. 104, 084314 (2008)

    Article  ADS  Google Scholar 

  19. B. Sensale-Rodriguez, R. Yan, M.M. Kelly, T. Fang, K. Tahy, W.S. Hwang, D. Jena, L. Liu, H.G. Xing, Nat. Commun. 3, 780 (2012)

    Article  ADS  Google Scholar 

  20. X. Luo, T. Qiu, W. Lu, Z. Ni, Mater. Sci. Eng. R 74, 351 (2013)

    Article  Google Scholar 

  21. D.K. Efetov, P. Kim, Phys. Rev. Lett. 105, 135 (2010)

    Google Scholar 

  22. T. Stauber, N.M.R. Peres, A.K. Geim, Phys. Rev. B 78, 085432 (2008)

    Article  ADS  Google Scholar 

  23. L.A. Falkovsky, S.S. Pershoguba, Phys. Rev. B 76, 153410 (2007)

    Article  ADS  Google Scholar 

  24. G.W. Hanson, IEEE T. Antenn. Propag. 56, 747 (2008)

    Article  ADS  Google Scholar 

  25. A. Locatelli, A.D. Capobianco, M. Midrio, S. Boscolo, C. De Angelis, Opt. Express 20, 28479 (2012)

    Article  ADS  Google Scholar 

  26. Z. Lu, W. Zhao, JOSA B 29, 1490 (2012)

    Article  ADS  Google Scholar 

  27. Y. Sun, Z. Zheng, J. Cheng, J. Liu, Opt. Commun. 328, 124 (2014)

    Article  ADS  Google Scholar 

  28. P. Berini, Opt. Express 24, 13030 (2006)

    Article  ADS  Google Scholar 

  29. Y. Bian, Z. Zheng, X. Zhao, J. Zhu, T. Zhou, Opt. Express 17, 21320 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renbin Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhong, R., Ding, H. et al. Graphene loaded double ridge plasmon Terahertz waveguide. Eur. Phys. J. D 71, 83 (2017). https://doi.org/10.1140/epjd/e2017-70223-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-70223-y

Keywords

Navigation