A quantum transport model for atomic line radiation in plasmas*

Regular Article
Part of the following topical collections:
  1. Topical Issue: Physics of Ionized Gases (SPIG 2016)


Emission and absorption lines in plasmas are investigated theoretically using a phase space formulation of quantum electrodynamics. A transport equation for the one-photon Wigner function is derived and formulated in terms of the noncommutative Moyal product. This equation reduces to the standard radiative transfer equation at the large spectral band limit, when the characteristic spectral band of the emission and absorption coefficients is larger than the inverse photon absorption length and time. We examine deviations to this limit. An ideal slab geometry is considered. The Wigner function relative to hydrogen Lyman α in stellar atmospheric conditions is calculated.

Graphical abstract


  1. 1.
    G.C. Pomraning, The Equations of Radiation Hydrodynamics (Pergamon, Oxford, 1973)Google Scholar
  2. 2.
    D. Mihalas, Stellar Atmospheres (Freeman, San Francisco, 1978)Google Scholar
  3. 3.
    J. Oxenius, Kinetic Theory of Particles and Photons – Theoretical Foundations of Non-LTE Plasma Spectroscopy (Springer, Berlin, 1986)Google Scholar
  4. 4.
    J.E. Bailey, G.A. Rochau, R.C. Mancini, C.A. Iglesias, J.J. MacFarlane, I.E. Golovkin, C. Blancard, Ph. Cosse, G. Faussurier, Phys. Plasmas 16, 058101 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    D. Reiter, S. Wiesen, M. Born, Plasma Phys. Control. Fusion 44, 1723 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    G.G. Lister, J.E. Lawler, W.P. Lapatovich, V.A. Godyak, Rev. Mod. Phys. 76, 541 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    P.W. Milonni, J.H. Eberly, Lasers (Wiley Interscience, New York, 1988)Google Scholar
  8. 8.
    L.V. Wang, H.I Wu, Biomedical Optics – Principles and Imaging (Wiley Interscience, Hoboken, 2007)Google Scholar
  9. 9.
    A. Mandelis, C. Feng, Phys. Rev. E 65, 021909 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon Press, Oxford, 1964)Google Scholar
  11. 11.
    J. Rosato, Phys. Rev. Lett. 107, 205001 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    J. Rosato, Transport Theor. Stat. Phys. 41, 214 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    J. Rosato, Phys. Rev. E 87, 043108 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    J. Rosato, Phys. Lett. A 378, 2586 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    J. Rosato, Phys. Rev. E 91, 053103 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    J. Rosato, J. Astrophys. Astronom. 36, 605 (2015)ADSGoogle Scholar
  17. 17.
    W.E. Brittin, W.R. Chappell, Rev. Mod. Phys. 34, 620 (1962)ADSCrossRefGoogle Scholar
  18. 18.
    K. Imre, E. Ozizmir, M. Rosenbaum, P. Zweifel, J. Math. Phys. 8, 1097 (1967)ADSCrossRefGoogle Scholar
  19. 19.
    R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley-Interscience, New York, 1975)Google Scholar
  20. 20.
    L. Allen, J.H. Eberly, Optical Resonance and Two-Level Atoms (Wiley-Interscience, New York, 1975)Google Scholar
  21. 21.
    B.W. Shore, The Theory of Coherent Atomic Excitation (Wiley-Interscience, New York, 1990)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Aix-Marseille Université, CNRS, PIIM UMR 7345Marseille Cedex 20France

Personalised recommendations