Skip to main content
Log in

Mass spectrometry of diffuse coplanar surface barrier discharge: influence of discharge frequency and oxygen content in N2/O2 mixture*

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Diffuse Coplanar Surface Barrier Discharge (DCSBD) has been studied extensively for industrial applications in recent decade. So far, limited information was available on the production of ozone or nitrogen oxides important for industrial deployment of DCSBD. In this paper results of mass spectrometry of DCSBD performed at atmospheric pressure are presented. DCSBD mass spectra were studied for different oxygen contents in N2/O2 working gas mixture at low flow rate (estimated residence time in discharge chamber was approx. 3 s). Influence of the driving frequency (15, 30 and 50 kHz) at constant high voltage amplitude was studied as well. Ozone and NO production in DCSBD are given as typical representatives. Production of ozone decreases with the driving frequency, which could be attributed to the gas heating at higher frequencies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Kogelschatz, Plasma Chem. Plasma Process. 23, 1 (2003)

    Article  Google Scholar 

  2. P. Bruggeman, R. Brandenburg, J. Phys. D: Appl. Phys 46, 464001 (2013)

    Article  ADS  Google Scholar 

  3. M. Šimor, J. Ráheĺ, P. Vojtek, M. Černák, A. Brablec, Appl. Phys. Lett. 81, 2716 (2002)

    Article  ADS  Google Scholar 

  4. J. Čech, J. Hanusová, P. Sťahel, M. Černák, Open Chemistry 13, 528 (2015)

    Google Scholar 

  5. M. Černák, D. Kováčik, J. Ráheĺ, P. Sťahel, A. Zahoranová, J. Kubincová, A. Tóth, Ĺ. Černáková, Plasma Phys. Control. Fusion 53, 124031 (2011)

    Article  ADS  Google Scholar 

  6. J. Čech, P. Stahel, Z. Navrátil, Eur. Phys. J. D 54, 259 (2009)

    Article  ADS  Google Scholar 

  7. E. Stoffels, Y.A. Gonzalvo, T.D. Whitmore, D.L. Seymour, J.A. Rees, Plasma Sources Sci. Technol. 16, 549 (2007)

    Article  ADS  Google Scholar 

  8. J.D. Skalny, J. Orszagh, N.J. Mason, J.A. Rees, Y.A. Gonzalvo, T.D. Whitmore, Int. J. Mass Spectrom. 272, 12 (2008)

    Article  Google Scholar 

  9. J. Benedikt, D. Ellerweg, A. von Keudell, Rev. Sci. Instrum. 80, 055107 (2009)

    Article  ADS  Google Scholar 

  10. S. Lazović, N. Puač, G. Malović, A. Đorđević, Z. Lj. Petrović, Chem. Listy 102, 1383 (2008)

    Google Scholar 

  11. G. Malović, N. Puač, S. Lazović, Z. Lj. Petrović, Plasma Sources Sci. Technol. 19, 034014 (2010)

    Article  ADS  Google Scholar 

  12. S. Lazović, N. Puač, N. Radić, T. Hoder, G. Malović, J. Ráheĺ, M. Černák, Z. Lj. Petrović, Publ. Astron. Obs. Belgrade 84, 401 (2008)

    ADS  Google Scholar 

  13. D. Maletić, N. Puač, S. Lazović, G. Malović, V. Schulz-von der Gathen, Z. Lj. Petrović, Plasma Phys. Contr. Fusion 54, 124046 (2012)

    Article  ADS  Google Scholar 

  14. N. Škoro, K. Spasić, N. Puač, G. Malović, Z. Lj. Petrović, in Proceedings of 20th International Conference on Gas Discharges and their Applications, Orléans, France (2014), p. 486

  15. K. Spasić, N. Škoro, N. Puač, G. Malović, Z. Lj. Petrović, in 27th Summer School and International Symposium on the Physics of Ionized Gases (SPIG 2014), Belgrade, Serbia (2014), p. 439

  16. D. Rapp, G.P. Englande, D.D. Briglia, J. Chem. Phys. 42, 4081 (1965)

    Article  ADS  Google Scholar 

  17. D.C. Frost, C.A. McDowell, Proc. of the Royal Society of London. Series A, Mathematical and Physical Sciences 236, 178 (1956)

  18. E. Stoffels, Y.A. Gonzalvo, T.D. Whitmore, D.L. Seymour, J.A. Rees, Plasma Sources Sci. Technol. 15, 501 (2006)

    Article  ADS  Google Scholar 

  19. T.R. Hogness, E.G. Lunn, Phys. Rev. 30, 26 (1927)

    Article  ADS  Google Scholar 

  20. N.J. Mason, W.R. Newell, J. Phys. B 22, 2297 (1989)

    Article  ADS  Google Scholar 

  21. G. Allcock, J.W. McConkye, Chem. Phys. 34, 169 (1978)

    Article  ADS  Google Scholar 

  22. J.W. McConkey, C.P. Malone, P.V. Johnson, C. Winstead, V. McKoy, I. Kanik, Phys. Rep. 466, 1 (2008)

    Article  ADS  Google Scholar 

  23. S. Yonemori, Y. Nakagawa, R. Ono, T. Oda, J. Phys. D. Appl. Phys. 45, 225202 (2012)

    Article  ADS  Google Scholar 

  24. R. Ono, T. Oda, in 33rd IAS Annual Meeting, New York, USA (1998), Vol. 3, p. 1777

  25. P. Bruggeman, D.C. Schram, Plasma Sources Sci. Technol. 19, 045025 (2010)

    Article  ADS  Google Scholar 

  26. T. Verreycken, R.M. van der Horst, A.H.F.M. Baede, E.M. Van Veldhuizen, P.J. Bruggeman, J. Phys. D: Appl. Phys. 45, 045205 (2012)

    Article  ADS  Google Scholar 

  27. N. Puač, M. Miletić, M. Mojović, A. Popović-Bijelić, D. Vuković, B. Miličić, D. Maletić, S. Lazović, G. Malović, Z. Lj. Petrović, Open Chem. 33, 332 (2015)

    Google Scholar 

  28. J. Ráheĺ, Zs. Szalay, J. Čech, T. Morávek, Eur. Phys. J. D 70, 92 (2016)

    Article  ADS  Google Scholar 

  29. G.J. Pietsch, V.I. Gibalov, Pure Appl. Chem. 70, 1169 (1998)

    Article  Google Scholar 

  30. N. Mericam-Bourdet, M.J. Kirkpatrick, F. Tuvache, D Frochot, E. Odic, Eur. Phys. J.: Appl. Phys. 57, 30801 (2012)

    ADS  Google Scholar 

  31. H. Kobayashi, T. Tandou, H. Nagaishi, K. Suzuki, N. Negishi, Jpn J. Appl. Phys. 51, 8HC04 (2012)

    Article  Google Scholar 

  32. S. Jodzis, in Proceedings of Int. Symp. on High Pressure Low Temperature Plasma Chemistry HAKONE XIII, Kazimierz Dolny, Poland (2012), p. 53

  33. S. Pekárek, J. Mikeš, Eur. Phys. J. D 68, 310 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution to the Topical Issue “Low-Energy Interactions related to Atmospheric and Extreme Conditions”, edited by S. Ptasinska, M. Smialek-Telega, A. Milosavljevic and B. Sivaraman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Čech, J., Brablec, A., Černák, M. et al. Mass spectrometry of diffuse coplanar surface barrier discharge: influence of discharge frequency and oxygen content in N2/O2 mixture*. Eur. Phys. J. D 71, 27 (2017). https://doi.org/10.1140/epjd/e2016-70607-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-70607-5

Navigation