Controlling energy flux into a spatially correlated environment via quantum coherence

  • Lei Li
  • Jian Zou
  • Hai Li
  • Jun-Gang Li
  • Yuan-Mei Wang
  • Bin Shao
Regular Article
  • 122 Downloads

Abstract

We consider two two-level atoms interacting with a vacuum electromagnetic (EM) field. We study the effects of initial correlations and quantum coherence on the energy flux of two atoms into a spatially correlated environment, and we find that quantum coherence plays a decisive role in the energy flux dynamics. And by manipulating the relative phase, we can control the initial value of the energy flux, the speed of energy release in different stages of the dynamics and the release time of the energy of two atoms. Furthermore, we study the energy flux dynamics of one of the two atoms, and the other atom as an auxiliary atom, and then the atom we concern can be considered to be coupled to a structured bath (auxiliary atom + EM field). Based on this, we find that by manipulating the relative phase, we can control the initial direction of the energy flow between the atom concerned and the structure bath, and the energy backflow during the time evolution.

Graphical abstract

Keywords

Quantum Information 

References

  1. 1.
    Y. Dubi, M.D. Ventra, Rev. Mod. Phys. 83, 131 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    B.W. Lovett, J.H. Reina, A. Nazir, G.A.D. Briggs, Phys. Rev. B 68, 205319 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    K. Fujii, K. Yamamoto, Phys. Rev. A 82, 042109 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    S.K. Sekatskii, M. Chergui, G. Dietler, Europhys. Lett. 63, 21 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    L.G.C. Rego, G. Kirczenow, Phys. Rev. Lett. 81, 232 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    K. Schwab, E.A. Henriksen, J.M. Worlock, M.L. Roukes, Nature 404, 974 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    J. Gong, D. Poletti, P. Hanggi, Phys. Rev. A 75, 033602 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    B. Leggio, R. Messina, M. Antezza, Europhys. Lett. 110, 40002 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    J.S. Briggs, A. Eisfeld, Phys. Rev. E 83, 051911 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    G.-F. Zhang, Eur. Phys. J. D 49, 123 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    H. Li, J. Zou, W.-L. Yu, L. Li, B.-M. Xu, B. Shao, Eur. Phys. J. D 67, 134 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    L.-A. Wu, D. Segal, Phys. Rev. E 77, 060101 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    L. Wang, B. Li, Phys. Rev. Lett. 99, 177208 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    J. Jing, D. Segal, B. Li, L.-A. Wu, Sci. Rep. 5, 15332 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    D. Segal, Phys. Rev. B 73, 205415 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    T. Chen, X.-B. Wang, J. Ren, Phys. Rev. B 87, 144303 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    A. Bérut, A. Petrosyan, S. Ciliberto, Europhys. Lett. 107, 60004 (2014)CrossRefGoogle Scholar
  18. 18.
    E. Boukobza, D.J. Tannor, Phys. Rev. A 74, 063823 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    A.A. Valido, A. Ruiz, A. Daniel, Phys. Rev. E 91, 062123 (2015)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    S. Lorenzo, A. Farace, F. Ciccarello, G.M. Palma, V. Giovannetti, Phys. Rev. A 91, 022121 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    S. Oviedo-Casado, J. Prior, A.W. Chin, R. Rosenbach, S.F. Huelga, M.B. Plenio, Phys. Rev. A 93, 020102 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    T.R. Bromley, M. Cianciaruso, G. Adesso, Phys. Rev. Lett. 114, 210401 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    A. Streltsov, U. Singh, H.S. Dhar, M.N. Bera, G. Adesso, Phys. Rev. Lett. 115, 020403 (2015)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    F. Levi, F. Mintert, New J. Phys. 16, 033007 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    L.-H. Shao, Z. Xi, H. Fan, Y. Li, Phys. Rev. A 91, 042120 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Yao, X. Xiao, L. Ge, C.-P. Sun, Phys. Rev. A 92, 022112 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    H. Li, J. Zou, W.-L. Yu, B.-M. Xu, J.-G. Li, B. Shao, Phys. Rev. E 89, 052132 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    M.-L. Hu, H. Fan, Sci. Rep. 6, 29260 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    J.-X. Han, Y. Hu, Y. Jin, G.-F. Zhang, J. Chem. Phys. 144, 134308 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    R.H. Dicke, Phys. Rev. 93, 99 (1954)ADSCrossRefGoogle Scholar
  31. 31.
    R.H. Lehmberg, Phys. Rev. A 2, 883 (1970)ADSCrossRefGoogle Scholar
  32. 32.
    R.H. Lehmberg, Phys. Rev. A 2, 889 (1970)ADSCrossRefGoogle Scholar
  33. 33.
    G.S. Agarwal, Quantum statistical theories of spontaneous emission and their relation to other approaches, in Springer Tracts in Modern Physics (Springer, 1974), Vol. 70Google Scholar
  34. 34.
    Z. Ficek, S. Swain, Quantum Interference and Coherence: Theory and Experiments (Springer, 2005)Google Scholar
  35. 35.
    M.B. Plenio, S.F. Huelga, A. Beige, P.L. Knight, Phys. Rev. A 59, 2468 (1999)ADSCrossRefGoogle Scholar
  36. 36.
    G.K. Brennen, I.H. Deutsch, P.S. Jessen, Phys. Rev. A 61, 062309 (2000)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    U. Akram, Z. Ficek, S. Swain, Phys. Rev. A 62, 013413 (2000)ADSCrossRefGoogle Scholar
  38. 38.
    Z. Ficek, R. Tanaś, Phys. Rep. 372, 369 (2002)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Z. Ficek, R. Tanaś, Phys. Rev. A 74, 024304 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    R.G. DeVoe, R.G. Brewer, Phys. Rev. Lett. 76, 2049 (1996)ADSCrossRefGoogle Scholar
  41. 41.
    R. Alicki, J. Phys. A 12, L103 (1979)ADSCrossRefGoogle Scholar
  42. 42.
    S. Hill, W.K. Wootters, Phys. Rev. Lett. 78, 5022 (1997)ADSCrossRefGoogle Scholar
  43. 43.
    C.-Z. Wang, C.-X. Li, L.-Y. Nie, J.-F. Li, J. Phys. B 44, 015503 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    R. Alicki, K. Lendi, Quantum Dynamical Semigroups and Applications (Springer, Berlin, 2007)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Lei Li
    • 1
    • 2
  • Jian Zou
    • 1
  • Hai Li
    • 3
  • Jun-Gang Li
    • 1
  • Yuan-Mei Wang
    • 1
  • Bin Shao
    • 1
  1. 1.School of Physics, Beijing Institute of TechnologyBeijingChina
  2. 2.Southwest Institute of Technical PhysicsSichuanChina
  3. 3.School of Information and Electronic Engineering, Shandong Technology and Business UniversiyYantaiChina

Personalised recommendations