Abstract
The paper describes a new discharge source of atmospheric pressure plasma jets (APPJs) in air with no gas supply through the discharge region. In this discharge mode, plasma jets develop from the bending point of a bright current channel between two electrodes and are therefore termed an apokamp (from Greek ‘off’ and ‘bend’). The apokamp can represent single plasma jets of length up 6 cm or several jets, and the temperature of such jets can range from more than 1000 °C at their base to 100–250 °C at their tip. Apokamps are formed at maximum applied voltage of positive polarity, provided that the second electrode is capacitively decoupled with ground. According to high-speed photography with time resolution from several nanoseconds to several tens of nanoseconds, the apokamp consists of a set of plasma bullets moving with a velocity of 100–220 km/s, which excludes the convective mechanism of plasma decay. Estimates on a 100-ns scale show that the near-electrode zones and the zones from which apokamps develop are close in temperature.
Graphical abstract
Similar content being viewed by others
References
X. Lu, G.V. Naidis, M. Laroussi, S. Reuter, D.B. Graves, K. Ostrikov, Phys. Rep. 630, 1 (2016)
O.V. Penkov, M. Khadem, W.-S. Lim, D.-E. Kim, J. Coat. Technol. Res. 12, 225 (2015)
J. Ehlbeck, U. Schnabel, M. Polak, J. Winter, Th. von Woedtke, R. Brandenburg, T. von dem Hagen, K.-D. Weltmann, J. Phys. D: Appl. Phys. 44, 013002 (2011)
M.G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk, J.L. Zimmermann, New J. Phys. 11, 115012 (2009)
A. Schutze, J.Y. Jeong, S.E. Babayan, J. Park, G.S. Selwyn, R.F. Hicks, IEEE Trans. Plasma Sci. 26, 1685 (1998)
Z. Machala, K. Hensel, Yu. Akishev, Plasma for Bio-Decontamination, Medicine and Food Security, NATO Science for Peace and Security Series A: Chemistry and Biology (Springer, 2012)
J. Tang, S. Li, W. Zhao, Y. Wang, Y. Duan, Appl. Phys. Lett. 100, 253505 (2012)
O.S. Zhdanova, V.S. Kuznetsov, V.A. Panarin, V.S. Skakun, E.A Sosnin, V.F. Tarasenko, Prikl. Fiz. (Appl. Phys.) 2, 34 (2015) (in Russian)
J.Y. Kim, J. Ballato, S.-O. Kim, Plasma Process. Polym. 9, 253 (2012)
J.Y. Kim, D.-H. Lee, J. Ballato, W. Cao, S.-O. Kim, Appl. Phys. Lett. 101, 224101 (2012)
A. Sarani, A.Y. Nikiforov, C. Leys, Phys. Plasmas 17, 063504 (2010)
C. Cheng, S. Jie, X. De-Zhi, X. Hong-Bing, L. Yan, F. Shi-Dong, M. Yue-Dong, C. Paul K, Chin. Phys. B 23, 075204 (2014)
A.S. Chiper, W. Chen, O. Mejlholm, P. Dalgaard, E. Stamate, Plasma Sources Sci. Technol. 20, 025008 (2011)
K. Malecha, Sens. Actuators B 181, 486 (2013)
S.E. Babayan, J.Y. Jeong, V.J. Tu, J. Park, G.S. Selwyn, R.F. Hicks, Plasma Source Sci. Technol. 7, 286 (1998)
E. Stoffels, A.J. Flikweert, W.W. Stoffels, G.M.W. Kroesen, Plasma Sources Sci. Technol. 11, 383 (2002)
J.R. Roth, D.M. Sherman, R.B. Gadri, F. Karakaya, Zhiyu Chen, T.C. Montie, K. Kelly-Wintenberg, P.P.-Y. Tsai, IEEE Trans. Plasma Sci. 28, 56 (2000)
Ju.S. Akishev, M.E. Grushin, N.I. Trushkin, Patent RU 2398589, priority date 26.10.2007
X.L. Deng, A.Yu. Nikiforov, P. Vanraes, Ch. Leys, J. Appl. Phys. 113, 023305 (2013)
G. Uchida, K. Takenaka, Y. Setsuhara, J. Appl. Phys. 117, 153301 (2015)
K.L. Lai, K.K. Jayapalan, O.H. Chin, P.F. Lee, C.S. Wong, AIP Conf. Proc. 1657, 150002 (2015)
T. Shao, C. Zhang, R. Wang, Y. Zhou, Q. Xie, Z. Fang, IEEE Trans. Plasma Sci. 43, 726 (2015)
E.A. Sosnin, V.A. Panarin, V.S. Skakun, V.F. Tarasenko, D.S. Pechenitsin, D.S. Kuznetsov, Proc. SPIE 9810, 98101I (2015)
E.A. Sosnin, V.A. Panarin, V.S. Skakun, V.F. Tarasenko, D.S. Pechenitsin, V.S. Kuznetsov, Tech. Phys. 61, 789 (2016)
A. Abahazem, A. Mraihi, N. Merbahi, M. Yousfi, O. Eichwald, IEEE Trans. Plasma Sci. 39, 2230 (2011)
X. Pei, X. Lu, J. Liu, D. Liu, Y. Yang, K. Ostrikov, P.K. Chu, Y. Pan, J. Phys. D: Appl. Phys. 45, 165205 (2012)
Y.Ch. Hong, H.S. Uhm, Appl. Phys. Lett. 89, 221504 (2006)
A.-A.H. Mohamed, J.F. Kolb, K.H. Shoenbach, Eur. Phys. J. D 60, 517 (2010)
X. Li, J. Tang, X. Zhan, X. Yuan, Zh. Zhao, Y. Yan, Y. Duan, Appl. Phys. Lett. 103, 033519 (2013)
Z. Niu, T. Shao, IEEE Trans. Plasma Sci. 39, 2127495 (2011)
E.A. Sosnin, V.S. Skakun, V.A. Panarin, D.S. Pechenitsin, V.F. Tarasenko, E.Kh. Baksht, J. Exp. Theor. Phys. Lett. 103, 761 (2016)
M. Teschke, J. Kedzierski, E.G. Finantu-Dinu, D. Korzec, J. Engemann, IEEE Trans. Plasma Sci. 33, 310 (2005)
X. Lu, M. Laroussi, J. Appl. Phys. 100, 063302 (2006)
G.V. Naidis, J. Phys. D: Appl. Phys. 43, 402001 (2010)
E. Karakas, M. Laroussi, J. Appl. Phys. 108, 063305 (2010)
X. Lu, M. Laroussi, V. Puech, Plasma Sources Sci. Technol. 21, 034005 (2012)
Y.B. Xian, P. Zhang, X.P. Lu, X.K. Pei, S.Q. Wu, Q. Xiong, K. Ostrikov, Sci. Rep. 3, 1599 (2013)
S. Wu, X. Lu, Phys. Plasmas 21, 123509 (2014)
D.A. Lacoste, A. Bourdon, K. Kuribara, K. Urabe, S. Stauss, K. Terashima, Plasma Sources Sci. Technol. 23, 062006 (2014)
S. Wu, H. Xu, Y. Xian, Y. Lu, X. Lu, AIP Adv. 5, 027110 (2015)
Y.B. Xian, X.P. Lu, S.Q. Wu, P.K. Chu, Y. Pan, Appl. Phys. Lett. 100, 123702 (2012)
M.F. Zhukov, A.S. Koroteev, B.A. Uryukov, Applied Dynamics of Thermal Plasma (Nauka, Novosibirsk, 1975) (in Russian)
E.A. Sosnin, V.S. Skakun, V.A. Panarin, V.F. Tarasenko, O.S. Zhdanova, P.A. Goltsova, Modern Sci. Res. Innov. (2016), URL: http://web.snauka.ru/en/issues/2016/03/65016
J. Mahoney, W. Zhu, V.S. Johnson, K.H. Becker, J.L. Lopez, Eur. Phys. J. D 60, 441 (2010)
J. Shi, F. Zhong, J. Zhang, D.W. Liu, M.G. Kong, Phys. Plasmas 15, 013504 (2008)
M.I. Lomaev, D.V. Beloplotov, V.F. Tarasenko, D.A. Sorokin, IEEE Trans. Dielectr. Electr. Insul. 22, 1833 (2015)
V.F. Tarasenko, D.V. Beloplotov, M.I. Lomaev, Plasma Phys. Rep. 41, 832 (2015)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sosnin, E.A., Panarin, V.A., Skakun, V.S. et al. Dynamics of apokamp-type atmospheric pressure plasma jets. Eur. Phys. J. D 71, 25 (2017). https://doi.org/10.1140/epjd/e2016-70466-0
Received:
Published:
DOI: https://doi.org/10.1140/epjd/e2016-70466-0