Skip to main content
Log in

Stable scalable control of soliton propagation in broadband nonlinear optical waveguides

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We develop a method for achieving scalable transmission stabilization and switching of N colliding soliton sequences in optical waveguides with broadband delayed Raman response and narrowband nonlinear gain-loss. We show that dynamics of soliton amplitudes in N-sequence transmission is described by a generalized N-dimensional predator-prey model. Stability and bifurcation analysis for the predator-prey model are used to obtain simple conditions on the physical parameters for robust transmission stabilization as well as on-off and off-on switching of M out of N soliton sequences. Numerical simulations for single-waveguide transmission with a system of N coupled nonlinear Schrödinger equations with 2 ≤ N ≤ 4 show excellent agreement with the predator-prey model’s predictions and stable propagation over significantly larger distances compared with other broadband nonlinear single-waveguide systems. Moreover, stable on-off and off-on switching of multiple soliton sequences and stable multiple transmission switching events are demonstrated by the simulations. We discuss the reasons for the robustness and scalability of transmission stabilization and switching in waveguides with broadband delayed Raman response and narrowband nonlinear gain-loss, and explain their advantages compared with other broadband nonlinear waveguides.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, CA, 2001)

  2. F. Forghieri, R.W. Tkach, A.R. Chraplyvy, in Optical Fiber Telecommunications III, edited by I.P. Kaminow, T.L. Koch (Academic, San Diego, CA, 1997), Chap. 8

  3. L.F. Mollenauer, J.P. Gordon, Solitons in Optical Fibers: Fundamentals and Applications (Academic, San Diego, CA, 2006)

  4. A.H. Gnauck, R.W. Tkach, A.R. Chraplyvy, T. Li, J. Lightwave Technol. 26, 1032 (2008)

    Article  ADS  Google Scholar 

  5. R.-J. Essiambre, G. Kramer, P.J. Winzer, G.J. Foschini, B. Goebel, J. Lightwave Technol. 28, 662 (2010)

    Article  ADS  Google Scholar 

  6. Q. Lin, O.J. Painter, G.P. Agrawal, Opt. Express 15, 16604 (2007)

    Article  ADS  Google Scholar 

  7. R. Dekker, N. Usechak, M. Först, A. Driessen, J. Phys. D 40, R249 (2007)

    Article  ADS  Google Scholar 

  8. M.A. Foster, A.C. Turner, M. Lipson, A.L. Gaeta, Opt. Express 16, 1300 (2008)

    Article  ADS  Google Scholar 

  9. J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, I. Bennion, IEEE Photon. Technol. Lett. 8, 60 (1996)

    Article  ADS  Google Scholar 

  10. H. Shi, J. Finlay, G.A. Alphonse, J.C. Connolly, P.J. Delfyett, IEEE Photon. Technol. Lett. 9, 1439 (1997)

    Article  ADS  Google Scholar 

  11. H. Zhang, D.Y. Tang, X. Wu, L.M. Zhao, Opt. Express 17, 12692 (2009)

    Article  ADS  Google Scholar 

  12. X.M. Liu, D.D. Han, Z.P. Sun, C. Zeng, H. Lu, D. Mao, Y.D. Cui, F.Q. Wang, Sci. Rep. 3, 2718 (2013)

    ADS  Google Scholar 

  13. E. Iannone, F. Matera, A. Mecozzi, M. Settembre, Nonlinear Optical Communication Networks (Wiley, New York, 1998)

  14. L.F. Mollenauer, P.V. Mamyshev, IEEE J. Quantum Electron. 34, 2089 (1998)

    Article  ADS  Google Scholar 

  15. Q.M. Nguyen, A. Peleg, Opt. Commun. 283, 3500 (2010)

    Article  ADS  Google Scholar 

  16. A. Peleg, Q.M. Nguyen, Y. Chung, Phys. Rev. A 82, 053830 (2010)

    Article  ADS  Google Scholar 

  17. A. Peleg, Y. Chung, Phys. Rev. A 85, 063828 (2012)

    Article  ADS  Google Scholar 

  18. D. Chakraborty, A. Peleg, J.-H. Jung, Phys. Rev. A 88, 023845 (2013)

    Article  ADS  Google Scholar 

  19. Q.M. Nguyen, A. Peleg, T.P. Tran, Phys. Rev. A 91, 013839 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Peleg, Q.M. Nguyen, T.P. Tran, Opt. Commun. 380, 41 (2016)

    Article  ADS  Google Scholar 

  21. A.R. Chraplyvy, Electron. Lett. 20, 58 (1984)

    Article  ADS  Google Scholar 

  22. F. Forghieri, R.W. Tkach, A.R. Chraplyvy, IEEE Photon. Technol. Lett. 7, 101 (1995)

    Article  ADS  Google Scholar 

  23. K.-P. Ho, J. Lightwave Technol. 18, 915 (2000)

    Article  ADS  Google Scholar 

  24. T. Yamamoto, S. Norimatsu, J. Lightwave Technol. 21, 2229 (2003)

    Article  ADS  Google Scholar 

  25. A. Peleg, Opt. Lett. 29, 1980 (2004)

    Article  ADS  Google Scholar 

  26. A. Peleg, Phys. Lett. A 360, 533 (2007)

    Article  ADS  Google Scholar 

  27. Y. Chung, A. Peleg, Phys. Rev. A 77, 063835 (2008)

    Article  ADS  Google Scholar 

  28. B. Bakhshi, L. Richardson, E.A. Golovchenko, in Proceedings of the Optical Fiber Communication Conference, San Diego, CA, 2009, paper OThC4.

  29. A. Peleg, Y. Chung, Opt. Commun. 285, 1429 (2012)

    Article  ADS  Google Scholar 

  30. M.N. Islam, Raman Amplifiers for Telecommunications 1: Physical Principles (Springer, New York, 2004)

  31. C. Headley, G.P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Elsevier, San Diego, CA, 2005)

  32. Y. Okawachi, O. Kuzucu, M.A. Foster, R. Salem, A.C. Turner-Foster, A. Biberman, N. Ophir, K. Bergman, M. Lipson, A.L. Gaeta, IEEE Photon. Technol. Lett. 24, 185 (2012)

    Article  ADS  Google Scholar 

  33. A. Peleg, Q.M. Nguyen, P. Glenn, Phys. Rev. E 89, 043201 (2014)

    Article  ADS  Google Scholar 

  34. S. Chi, S. Wen, Opt. Lett. 14, 1216 (1989)

    Article  ADS  Google Scholar 

  35. A.J. Lotka, Elements of Physical Biology (Williams and Wilkins, Baltimore, 1925)

  36. V. Volterra, J. Cons. Int. Explor. Mer 3, 1 (1928)

    Article  Google Scholar 

  37. B.A. Malomed, Phys. Rev. A 44, 1412 (1991)

    Article  ADS  Google Scholar 

  38. S. Kumar, Opt. Lett. 23, 1450 (1998)

    Article  ADS  Google Scholar 

  39. T.I. Lakoba, D.J. Kaup, Opt. Lett. 24, 808 (1999)

    Article  ADS  Google Scholar 

  40. Y. Chung, A. Peleg, Nonlinearity 18, 1555 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  41. Q.M. Nguyen, A. Peleg, J. Opt. Soc. Am. B 27, 1985 (2010)

    Article  ADS  Google Scholar 

  42. D. Chakraborty, A. Peleg, Q.M. Nguyen, Opt. Commun. 371, 252 (2016)

    Article  ADS  Google Scholar 

  43. H.A. Haus, J. Appl. Phys. 46, 3049 (1975)

    Article  ADS  Google Scholar 

  44. J.D. Moores, Opt. Commun. 96, 65 (1993)

    Article  ADS  Google Scholar 

  45. H.A. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avner Peleg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peleg, A., Nguyen, Q.M. & Huynh, T.T. Stable scalable control of soliton propagation in broadband nonlinear optical waveguides. Eur. Phys. J. D 71, 30 (2017). https://doi.org/10.1140/epjd/e2016-70387-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-70387-x

Keywords

Navigation