Skip to main content
Log in

Photoionization of multishell fullerenes studied by ab initio and model approaches*

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Photoionization of two buckyonions, C60@C240 and C20@C60, is investigated by means of time-dependent density-functional theory (TDDFT). The TDDFT-based photoabsorption spectrum of C60@C240, calculated in a broad photon energy range, resembles the sum of spectra of the two isolated fullerenes, thus illustrating the absence of strong plasmonic coupling between the fullerenes which was proposed earlier. The calculated spectrum of the smaller buckyonion, C20@C60, differs significantly from the sum of the cross sections of the individual fullerenes because of strong geometrical distortion of the system. The contribution of collective electron excitations arising in individual fullerenes is evaluated by means of plasmon resonance approximation (PRA). An extension of the PRA formalism is presented, which allows for the study of collective electron excitations in multishell fullerenes under photon impact. An advanced analysis of photoionization of buckyonions, performed using modern computational and analytical approaches, provides valuable information on the response of complex molecular systems to the external electromagnetic field.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Wopperer, P.M. Dinh, P.-G. Reinhard, E. Suraud, Phys. Rep. 562, 1 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  2. F. Lépine, J. Phys. B 48, 122002 (2015)

    Article  ADS  Google Scholar 

  3. A.V. Solov’yov, Int. J. Mod. Phys. B 19, 4143 (2005)

    Article  ADS  Google Scholar 

  4. A.V. Verkhovtsev, A.V. Korol, A.V. Solov’yov, Eur. Phys. J. D 66, 253 (2012)

    Article  ADS  Google Scholar 

  5. A.L.D. Kilcoyne et al., Phys. Rev. Lett. 105, 213001 (2010)

    Article  ADS  Google Scholar 

  6. S. Biswas, L.C. Tribedi, Phys. Rev. A 92, 060701(R) (2015)

    Article  ADS  Google Scholar 

  7. I.V. Hertel, H. Steger, J. de Vries, B. Weisser, C. Menzel, B. Kamke, W. Kamke, Phys. Rev. Lett. 68, 784 (1992)

    Article  ADS  Google Scholar 

  8. J. Berkowitz, J. Chem. Phys. 111, 1446 (1999)

    Article  ADS  Google Scholar 

  9. S.W.J. Scully et al., Phys. Rev. Lett. 94, 065503 (2005)

    Article  ADS  Google Scholar 

  10. L.G. Gerchikov, P.V. Efimov, V.M. Mikoushkin, A.V. Solov’yov, Phys. Rev. Lett. 81, 2707 (1998)

    Article  ADS  Google Scholar 

  11. P. Bolognesi, A. Ruocco, L. Avaldi, A.V. Verkhovtsev, A.V. Korol, A.V. Solov’yov, Eur. Phys. J. D 66, 254 (2012)

    Article  ADS  Google Scholar 

  12. M. Schüler, J. Berakdar, Y. Pavlyukh, Phys. Rev. A 92, 021403(R) (2015)

    Article  ADS  Google Scholar 

  13. A. Verkhovtsev, S. McKinnon, P. de Vera, E. Surdutovich, S. Guatelli, A.V. Korol, A. Rosenfeld, A.V. Solov’yov, Eur. Phys. J. D 69, 116 (2015)

    Article  ADS  Google Scholar 

  14. K.K. Baral et al., Phys. Rev. A 93, 033401 (2016)

    Article  ADS  Google Scholar 

  15. E. Brun, P. Cloutier, C. Sicard-Roselli, M. Fromm, L. Sanche, J. Phys. Chem. B 113, 10008 (2009)

    Article  Google Scholar 

  16. A.V. Verkhovtsev, A.V. Korol, A.V. Solov’yov, Phys. Rev. Lett. 114, 063401 (2015)

    Article  ADS  Google Scholar 

  17. D. Ugarte, Nature 359, 707 (1992)

    Article  ADS  Google Scholar 

  18. D. Ugarte, Carbon 33, 989 (1995)

    Article  Google Scholar 

  19. S. Iglesias-Groth, A. Ruiz, J. Bretón, J.M. Gomez Llorente, J. Chem. Phys. 118, 7103 (2003)

    Article  ADS  Google Scholar 

  20. R.R. Zope, J. Phys. B 41, 085101 (2008)

    Article  ADS  Google Scholar 

  21. V.K. Dolmatov, P. Brewer, S.T. Manson, Phys. Rev. A 78, 013415 (2008)

    Article  ADS  Google Scholar 

  22. M.Ya. Amusia, L.V. Chernysheva, E.Z. Liverts, Phys. Rev. A 80, 032503 (2009)

    Article  ADS  Google Scholar 

  23. A. Ruiz, J. Bretón, J.M. Gomez Llorente, J. Chem. Phys. 120, 6163 (2003)

    Article  ADS  Google Scholar 

  24. M.A. McCune, R. De, M.E. Madjet, H.S. Chakraborty, S.T. Manson, J. Phys. B 44, 241002 (2011)

    Article  ADS  Google Scholar 

  25. G. Casella, A. Bagno, G. Saielli, Phys. Chem. Chem. Phys. 15, 18030 (2013)

    Article  Google Scholar 

  26. T. Cabioc’h, J.C. Girard, M. Jaouen, M.F. Denanot, G. Hug, Europhys. Lett. 38, 471 (1997)

    Article  ADS  Google Scholar 

  27. M. Chhowalla, H. Wang, N. Sano, K.B.K. Teo, S.B. Lee, G.A.J. Amaratunga, Phys. Rev. Lett. 90, 155504 (2003)

    Article  ADS  Google Scholar 

  28. J.-P. Connerade, A.V. Solov’yov, Phys. Rev. A 66, 013207 (2002)

    Article  ADS  Google Scholar 

  29. B. Walker, A.M. Saitta, R. Gebauer, S. Baroni, Phys. Rev. Lett. 96, 113001 (2006)

    Article  ADS  Google Scholar 

  30. D. Rocca, R. Gebauer, Y. Saad, S. Baroni, J. Chem. Phys. 128, 154105 (2008)

    Article  ADS  Google Scholar 

  31. O.B. Malcioğlu, R. Gebauer, D. Rocca, S. Baroni, Comp. Phys. Commun. 182, 1744 (2011)

    Article  ADS  Google Scholar 

  32. B. Walker, R. Gebauer, J. Chem. Phys. 127, 164106 (2007)

    Article  ADS  Google Scholar 

  33. M.J. Frisch et al., Gaussian 09 Revision A.02 (Gaussian Inc. Wallingford CT, 2009)

  34. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  35. P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009)

    Google Scholar 

  36. A.M. Rappe, K.M. Rabe, E. Kaxiras, J.D. Joannopoulos, Phys. Rev. B 41, 1227 (1990)

    Article  ADS  Google Scholar 

  37. A.M. Rappe, K.M. Rabe, E. Kaxiras, J.D. Joannopoulos, Phys. Rev. B 44, 13175 (1991) (erratum)

    Article  ADS  Google Scholar 

  38. Ph. Lambin, A.A. Lucas, J.-P. Vigneron, Phys. Rev. B 46, 1794 (1992)

    Article  ADS  Google Scholar 

  39. D. Östling, P. Apell, A. Rosen, Europhys. Lett. 21, 539 (1993)

    Article  ADS  Google Scholar 

  40. S. Lo, A.V. Korol, A.V. Solov’yov, J. Phys. B 40, 3973 (2007)

    Article  ADS  Google Scholar 

  41. A.V. Verkhovtsev, A.V. Korol, A.V. Solov’yov, P. Bolognesi, A. Ruocco, L. Avaldi, J. Phys. B 45, 141002 (2012)

    Article  ADS  Google Scholar 

  42. A.V. Verkhovtsev, A.V. Korol, A.V. Solov’yov, J. Phys.: Conf. Ser. 438, 012011 (2013)

    ADS  Google Scholar 

  43. A.V. Verkhovtsev, A.V. Korol, A.V. Solov’yov, Phys. Rev. A 88, 043201 (2013)

    Article  ADS  Google Scholar 

  44. P. Apell, D. Östling, G. Mukhopadhyay, Solid State Commun. 87, 219 (1993)

    Article  ADS  Google Scholar 

  45. B. Vasvári, Z. Phys. B 100, 223 (1996)

    Article  ADS  Google Scholar 

  46. A.V. Korol, A.V. Solov’yov, Phys. Rev. Lett. 98, 179601 (2007)

    Article  ADS  Google Scholar 

  47. A.V. Verkhovtsev, R.G. Polozkov, V.K. Ivanov, A.V. Korol, A.V. Solov’yov, J. Phys. B 45, 215101 (2012)

    Article  ADS  Google Scholar 

  48. T. Lu, F. Chen, J. Comput. Chem. 33, 580 (2012)

    Article  Google Scholar 

  49. R.R. Zope, S. Bhusal, L. Basurto, T. Baruah, K. Jackson, J. Chem. Phys. 143, 084306 (2015)

    Article  ADS  Google Scholar 

  50. S. Saito, A. Oshiyama, Phys. Rev. Lett. 66, 2637 (1991)

    Article  ADS  Google Scholar 

  51. B.P. Kafle, H. Katayanagi, M. Prodhan, H. Yagi, C. Huang, K. Mitsuke, J. Phys. Soc. Jpn 77, 014302 (2008)

    Article  ADS  Google Scholar 

  52. A.V. Korol, A.V. Solov’yov, Polarization Bremsstrahlung, Springer Series on Atomic, Optical, and Plasma Physics (Springer, 2014), Vol. 80

  53. L. Türker, J. Molec. Struct. (Theochem) 545, 207 (2001)

    Article  Google Scholar 

  54. F. Liu, L. Meng, S. Zheng, J. Molec. Struct. (Theochem) 725, 17 (2005)

    Article  ADS  Google Scholar 

  55. M.A. Fox, J.K. Whitesell, Organic Chemistry, 3rd edn. (Jones & Bartlett Publishers, Sudbury, MA, 2004)

  56. P. Schwerdtfeger, L.N. Wirz, J. Avery, WIREs Comput. Mol. Sci. 5, 96 (2015)

    Article  Google Scholar 

  57. S. Lo, A.V. Korol, A.V. Solov’yov, Phys. Rev. A 79, 063201 (2009)

    Article  ADS  Google Scholar 

  58. L.G. Gerchikov, A.N. Ipatov, R.G. Polozkov, A.V. Solov’yov, Phys. Rev. A 62, 043201 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Verkhovtsev.

Additional information

Contribution to the Topical Issue “Atomic Cluster Collisions (7th International Symposium)”, edited by Gerardo Delgado Barrio, Andrey Solov’yov, Pablo Villarreal, Rita Prosmiti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verkhovtsev, A., Korol, A. & Solov’yov, A. Photoionization of multishell fullerenes studied by ab initio and model approaches*. Eur. Phys. J. D 70, 221 (2016). https://doi.org/10.1140/epjd/e2016-70278-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-70278-2

Navigation