Skip to main content
Log in

Correlation between helium atmospheric pressure plasma jet (APPJ) variables and plasma induced DNA damage

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A helium atmospheric pressure plasma jet (APPJ) source with a dielectric capillary and two tubular electrodes was used to induce damage in aqueous plasmid DNA. The fraction of different types of DNA damage (i.e., intact or undamaged, double strand breaks (DSBs), and single strand breaks (SSBs)) that occurred as the result of plasma irradiation was quantified through analysis of agarose gel electrophoresis images. The total DNA damage increased with an increase in both flow rate and duration of irradiation, but decreased with an increase in distance between the APPJ and sample. The average power of the plasma was calculated and the length of APPJ was measured for various flow rates and voltages applied. The possible effects of plasma power and reactive species on DNA damage are discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. von Woedtke, S. Reuter, K. Masur, K.-D. Weltmann, Phys. Rep. 530, 291 (2013)

    Article  ADS  Google Scholar 

  2. K. Arjunan, V. Sharma, S. Ptasinska, Int. J. Mol. Sci. 16, 2971 (2015)

    Article  Google Scholar 

  3. D.B. Graves, Phys. Plasmas 21, 080901 (2014)

    Article  ADS  Google Scholar 

  4. E. Stoffels, I.E. Kieft, R.E.J. Sladek, J. Phys. D. 36, 2908 (2003)

    Article  ADS  Google Scholar 

  5. K.R. Stalder, J. Woloszko, Contrib. Plasma Phys. 47, 64 (2007).

    Article  ADS  Google Scholar 

  6. X. Zhang, M. Li, R. Zhou, K. Feng, S. Yang, Appl. Phys. Lett. 93, 021502 (2008)

    Article  ADS  Google Scholar 

  7. M. Laroussi, Plasma Process. Polym. 2, 391 (2005)

    Article  Google Scholar 

  8. T. Sato, O. Furuya, K. Ikeda, T. Nakatani, Plasma Process. Polym. 5, 606 (2008)

    Article  Google Scholar 

  9. T. Sato, T. Miyahara, A. Doi, S. Ochiai, T. Urayama, T. Nakatani, Appl. Phys. Lett. 89, 88 (2006)

    Article  Google Scholar 

  10. E. Dolezalova, P. Lukes, Bioelectrochemistry 103, 7 (2015)

    Article  Google Scholar 

  11. G. Fridman, M. Peddinghaus, M. Balasubramanian, H. Ayan, A. Fridman, A. Gutsol, A. Brooks, Plasma Chem. Plasma Process. 26, 425 (2006)

    Article  Google Scholar 

  12. T. Von Woedtke, H.R. Metelmann, K.D. Weltmann, Contrib. Plasma Phys. 54, 104 (2014)

    Article  ADS  Google Scholar 

  13. G. Isbary, G. Morfill, H.U. Schmidt, M. Georgi, K. Ramrath, J. Heinlin, S. Karrer, M. Landthaler, T. Shimizu, B. Steffes, W. Bunk, R. Monetti, J.L. Zimmermann, R. Pompl, W. Stolz, Br. J. Dermatol. 163, 78 (2010)

    Google Scholar 

  14. I.E. Kieft, J.L.V. Broers, V. Caubet-Hilloutou, D.W. Slaaf, F.C.S. Ramaekers, E. Stoffels, Bioelectromagnetics 25, 362 (2004)

    Article  Google Scholar 

  15. M. Vandamme, E. Robert, S. Lerondel, V. Sarron, D. Ries, S. Dozias, J. Sobilo, D. Gosset, C. Kieda, B. Legrain, J.M. Pouvesle, A. Le Pape, Int. J. Cancer 130, 2185 (2012)

    Article  Google Scholar 

  16. G.J. Kim, W. Kim, K.T. Kim, J.K. Lee, Appl. Phys. Lett. 96, 021502 (2010)

    Article  ADS  Google Scholar 

  17. X. Han, M. Klas, Y. Liu, M. Sharon Stack, S. Ptasinska, Appl. Phys. Lett. 102, 233703 (2013)

    Article  ADS  Google Scholar 

  18. E.A. Ratovitski, X. Cheng, D. Yan, J.H. Sherman, J. Canady, B. Trink, M. Keidar, Plasma Process. Polym. 11, 1128 (2014)

    Article  Google Scholar 

  19. S. Mohades, M. Laroussi, J. Sears, N. Barekzi, H. Razavi, Phys. Plasmas 22, 122001 (2015)

    Article  ADS  Google Scholar 

  20. S. Arndt, M. Landthaler, J.L. Zimmermann, P. Unger, E. Wacker, T. Shimizu, Y.F. Li, G.E. Morfill, A.K. Bosserhoff, S. Karrer, PLoS One 10, 1 (2015)

    Google Scholar 

  21. G. Fridman, A. Shereshevsky, M.M. Jost, A.D. Brooks, A. Fridman, A. Gutsol, V. Vasilets, G. Friedman, Plasma Chem. Plasma Process. 27, 163 (2007)

    Article  Google Scholar 

  22. J. Heinlin, G. Isbary, W. Stolz, G. Morfill, M. Landthaler, T. Shimizu, B. Steffes, T. Nosenko, J.L. Zimmermann, S. Karrer, J. Eur. Acad. Dermatol. Venereol. 25, 1 (2011)

    Article  Google Scholar 

  23. G. Fridman, G. Friedman, A. Gutsol, A.B. Shekhter, V.N. Vasilets, A. Fridman, Plasma Process. Polym. 5, 503 (2008)

    Article  Google Scholar 

  24. H.W. Lee, G.Y. Park, Y.S. Seo, Y.H. Im, S.B. Shim, H.J. Lee, J. Phys. D 44, 053001 (2011)

    Article  ADS  Google Scholar 

  25. G.Y. Park, S.J. Park, M.Y. Choi, I.G. Koo, J.H. Byun, J.W. Hong, J.Y. Sim, G.J. Collins, J.K. Lee, Plasma Sources Sci. Technol. 21, 043001 (2012)

    Article  ADS  Google Scholar 

  26. M.G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk, J.L. Zimmermann, New J. Phys. 11, 115012 (2009)

    Article  ADS  Google Scholar 

  27. G. Lloyd, G. Friedman, S. Jafri, G. Schultz, A. Fridman, K. Harding, Plasma Process. Polym. 7, 194 (2010)

    Article  Google Scholar 

  28. M. Keidar, Plasma Sources Sci. Technol. 24, 033001 (2015)

    Article  ADS  Google Scholar 

  29. X. Han, W.A. Cantrell, E.E. Escobar, S. Ptasinska, Eur. Phys. J. D 68, 46 (2014)

    Article  ADS  Google Scholar 

  30. D. O’Connell, L.J. Cox, W.B. Hyland, S.J. McMahon, S. Reuter, W.G. Graham, T. Gans, F.J. Currell, Appl. Phys. Lett. 98, 043701 (2011)

    Article  ADS  Google Scholar 

  31. M.Y. Alkawareek, H. Alshraiedeh, S. Higginbotham, P.B. Flynn, Q.T. Algwari, S.P. Gorman, W.G. Graham, B.F. Gilmore, Plasma Med. 4, 211 (2014)

    Article  Google Scholar 

  32. S. Ptasińska, B. Bahnev, A. Stypczyńska, M. Bowden, N.J. Mason, N.S.J. Braithwaite, Phys. Chem. Chem. Phys. 12, 7779 (2010)

    Article  Google Scholar 

  33. X. Yan, F. Zou, X.P. Lu, G. He, M.J. Shi, Q. Xiong, X. Gao, Z. Xiong, Y. Li, F.Y. Ma, M. Yu, C.D. Wang, Y. Wang, G. Yang, Appl. Phys. Lett. 95, 083702 (2009)

    Article  ADS  Google Scholar 

  34. A. Stypczynska, S. Ptasinska, B. Bahnev, M. Bowden, N.S.J. Braithwaite, N.J. Mason, Chem. Phys. Lett. 500, 313 (2010)

    Article  ADS  Google Scholar 

  35. J.Y. Kim, D. Lee, J. Ballato, W. Cao, S. Kim, Appl. Phys. Lett. 101, 224101 (2012)

    Article  ADS  Google Scholar 

  36. B. Bahnev, M.D. Bowden, A. Stypczyńska, S. Ptasińska, N.J. Mason, N.S.J. Braithwaite, Eur. Phys. J. D 68, 140 (2014)

    Article  ADS  Google Scholar 

  37. H. Kurita, S. Miyachika, H. Yasuda, K. Takashima, A. Mizuno, Appl. Phys. Lett. 107, 263702 (2015)

    Article  ADS  Google Scholar 

  38. H. Kurita, T. Nakajima, H. Yasuda, K. Takashima, A. Mizuno, J.I.B. Wilson, S. Cunningham, Appl. Phys. Lett. 99, 191504 (2011)

    Article  ADS  Google Scholar 

  39. K. Niemi, C. O’Neill, L.J. Cox, J. Waskoenig, W.B. Hyland, S.J. McMahon, S. Reuter, F.J. Currell, W.G. Graham, D. O’Connell, T. Gans, AIP Conf. Proc. 1438, 23 (2012)

    Article  ADS  Google Scholar 

  40. X. Zhang, S. Ptasinska, J. Phys. D 47, 145202 (2014)

    Article  ADS  Google Scholar 

  41. W.-C. Zhu, Q. Li, X.-M. Zhu, Y.-K. Pu, J. Phys. D. 42, 202002 (2009)

    Article  ADS  Google Scholar 

  42. A. Schmidt-Bleker, S.A. Norberg, J. Winter, E. Johnsen, S. Reuter, K.D. Weltmann, M.J. Kushner, Plasma Sources Sci. Technol. 24, 035022 (2015)

    Article  ADS  Google Scholar 

  43. M. Klas, S. Ptasinska, Plasma Sources Sci. Technol. 22, 025013 (2013)

    Article  ADS  Google Scholar 

  44. N. Mericam-Bourdet, M. Laroussi, A. Begum, E. Karakas, J. Phys. D. 42, 055207 (2009)

    Article  ADS  Google Scholar 

  45. S. Lehnert, Biomolecular Action of Ionizing Radiation, 1st edn. (Taylor & Francis Group, New York, London, 2008)

  46. Q. Xiong, X.P. Lu, K. Ostrikov, Y. Xian, C. Zou, Z. Xiong, Y. Pan, Phys. Plasmas 17, 043506 (2010)

    Article  ADS  Google Scholar 

  47. C. Giustranti, C. Perez, S. Rousset, E. Balanzat, E. Sage, J. Chim. Phys. 96, 132 (1999)

    Article  Google Scholar 

  48. J. Jarrige, M. Laroussi, E. Karakas, Plasma Sources Sci. Technol. 19, 065005 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylwia Ptasinska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adhikari, E., Ptasinska, S. Correlation between helium atmospheric pressure plasma jet (APPJ) variables and plasma induced DNA damage. Eur. Phys. J. D 70, 180 (2016). https://doi.org/10.1140/epjd/e2016-70274-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-70274-6

Navigation