Correlation between helium atmospheric pressure plasma jet (APPJ) variables and plasma induced DNA damage

Regular Article
Part of the following topical collections:
  1. Topical Issue: Low-Energy Interactions related to Atmospheric and Extreme Conditions

Abstract

A helium atmospheric pressure plasma jet (APPJ) source with a dielectric capillary and two tubular electrodes was used to induce damage in aqueous plasmid DNA. The fraction of different types of DNA damage (i.e., intact or undamaged, double strand breaks (DSBs), and single strand breaks (SSBs)) that occurred as the result of plasma irradiation was quantified through analysis of agarose gel electrophoresis images. The total DNA damage increased with an increase in both flow rate and duration of irradiation, but decreased with an increase in distance between the APPJ and sample. The average power of the plasma was calculated and the length of APPJ was measured for various flow rates and voltages applied. The possible effects of plasma power and reactive species on DNA damage are discussed.

Graphical abstract

References

  1. 1.
    T. von Woedtke, S. Reuter, K. Masur, K.-D. Weltmann, Phys. Rep. 530, 291 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    K. Arjunan, V. Sharma, S. Ptasinska, Int. J. Mol. Sci. 16, 2971 (2015)CrossRefGoogle Scholar
  3. 3.
    D.B. Graves, Phys. Plasmas 21, 080901 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    E. Stoffels, I.E. Kieft, R.E.J. Sladek, J. Phys. D. 36, 2908 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    K.R. Stalder, J. Woloszko, Contrib. Plasma Phys. 47, 64 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    X. Zhang, M. Li, R. Zhou, K. Feng, S. Yang, Appl. Phys. Lett. 93, 021502 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    M. Laroussi, Plasma Process. Polym. 2, 391 (2005)CrossRefGoogle Scholar
  8. 8.
    T. Sato, O. Furuya, K. Ikeda, T. Nakatani, Plasma Process. Polym. 5, 606 (2008)CrossRefGoogle Scholar
  9. 9.
    T. Sato, T. Miyahara, A. Doi, S. Ochiai, T. Urayama, T. Nakatani, Appl. Phys. Lett. 89, 88 (2006)CrossRefGoogle Scholar
  10. 10.
    E. Dolezalova, P. Lukes, Bioelectrochemistry 103, 7 (2015)CrossRefGoogle Scholar
  11. 11.
    G. Fridman, M. Peddinghaus, M. Balasubramanian, H. Ayan, A. Fridman, A. Gutsol, A. Brooks, Plasma Chem. Plasma Process. 26, 425 (2006)CrossRefGoogle Scholar
  12. 12.
    T. Von Woedtke, H.R. Metelmann, K.D. Weltmann, Contrib. Plasma Phys. 54, 104 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    G. Isbary, G. Morfill, H.U. Schmidt, M. Georgi, K. Ramrath, J. Heinlin, S. Karrer, M. Landthaler, T. Shimizu, B. Steffes, W. Bunk, R. Monetti, J.L. Zimmermann, R. Pompl, W. Stolz, Br. J. Dermatol. 163, 78 (2010)Google Scholar
  14. 14.
    I.E. Kieft, J.L.V. Broers, V. Caubet-Hilloutou, D.W. Slaaf, F.C.S. Ramaekers, E. Stoffels, Bioelectromagnetics 25, 362 (2004)CrossRefGoogle Scholar
  15. 15.
    M. Vandamme, E. Robert, S. Lerondel, V. Sarron, D. Ries, S. Dozias, J. Sobilo, D. Gosset, C. Kieda, B. Legrain, J.M. Pouvesle, A. Le Pape, Int. J. Cancer 130, 2185 (2012)CrossRefGoogle Scholar
  16. 16.
    G.J. Kim, W. Kim, K.T. Kim, J.K. Lee, Appl. Phys. Lett. 96, 021502 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    X. Han, M. Klas, Y. Liu, M. Sharon Stack, S. Ptasinska, Appl. Phys. Lett. 102, 233703 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    E.A. Ratovitski, X. Cheng, D. Yan, J.H. Sherman, J. Canady, B. Trink, M. Keidar, Plasma Process. Polym. 11, 1128 (2014)CrossRefGoogle Scholar
  19. 19.
    S. Mohades, M. Laroussi, J. Sears, N. Barekzi, H. Razavi, Phys. Plasmas 22, 122001 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    S. Arndt, M. Landthaler, J.L. Zimmermann, P. Unger, E. Wacker, T. Shimizu, Y.F. Li, G.E. Morfill, A.K. Bosserhoff, S. Karrer, PLoS One 10, 1 (2015)Google Scholar
  21. 21.
    G. Fridman, A. Shereshevsky, M.M. Jost, A.D. Brooks, A. Fridman, A. Gutsol, V. Vasilets, G. Friedman, Plasma Chem. Plasma Process. 27, 163 (2007)CrossRefGoogle Scholar
  22. 22.
    J. Heinlin, G. Isbary, W. Stolz, G. Morfill, M. Landthaler, T. Shimizu, B. Steffes, T. Nosenko, J.L. Zimmermann, S. Karrer, J. Eur. Acad. Dermatol. Venereol. 25, 1 (2011)CrossRefGoogle Scholar
  23. 23.
    G. Fridman, G. Friedman, A. Gutsol, A.B. Shekhter, V.N. Vasilets, A. Fridman, Plasma Process. Polym. 5, 503 (2008)CrossRefGoogle Scholar
  24. 24.
    H.W. Lee, G.Y. Park, Y.S. Seo, Y.H. Im, S.B. Shim, H.J. Lee, J. Phys. D 44, 053001 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    G.Y. Park, S.J. Park, M.Y. Choi, I.G. Koo, J.H. Byun, J.W. Hong, J.Y. Sim, G.J. Collins, J.K. Lee, Plasma Sources Sci. Technol. 21, 043001 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    M.G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk, J.L. Zimmermann, New J. Phys. 11, 115012 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    G. Lloyd, G. Friedman, S. Jafri, G. Schultz, A. Fridman, K. Harding, Plasma Process. Polym. 7, 194 (2010)CrossRefGoogle Scholar
  28. 28.
    M. Keidar, Plasma Sources Sci. Technol. 24, 033001 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    X. Han, W.A. Cantrell, E.E. Escobar, S. Ptasinska, Eur. Phys. J. D 68, 46 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    D. O’Connell, L.J. Cox, W.B. Hyland, S.J. McMahon, S. Reuter, W.G. Graham, T. Gans, F.J. Currell, Appl. Phys. Lett. 98, 043701 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    M.Y. Alkawareek, H. Alshraiedeh, S. Higginbotham, P.B. Flynn, Q.T. Algwari, S.P. Gorman, W.G. Graham, B.F. Gilmore, Plasma Med. 4, 211 (2014)CrossRefGoogle Scholar
  32. 32.
    S. Ptasińska, B. Bahnev, A. Stypczyńska, M. Bowden, N.J. Mason, N.S.J. Braithwaite, Phys. Chem. Chem. Phys. 12, 7779 (2010)CrossRefGoogle Scholar
  33. 33.
    X. Yan, F. Zou, X.P. Lu, G. He, M.J. Shi, Q. Xiong, X. Gao, Z. Xiong, Y. Li, F.Y. Ma, M. Yu, C.D. Wang, Y. Wang, G. Yang, Appl. Phys. Lett. 95, 083702 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    A. Stypczynska, S. Ptasinska, B. Bahnev, M. Bowden, N.S.J. Braithwaite, N.J. Mason, Chem. Phys. Lett. 500, 313 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    J.Y. Kim, D. Lee, J. Ballato, W. Cao, S. Kim, Appl. Phys. Lett. 101, 224101 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    B. Bahnev, M.D. Bowden, A. Stypczyńska, S. Ptasińska, N.J. Mason, N.S.J. Braithwaite, Eur. Phys. J. D 68, 140 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    H. Kurita, S. Miyachika, H. Yasuda, K. Takashima, A. Mizuno, Appl. Phys. Lett. 107, 263702 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    H. Kurita, T. Nakajima, H. Yasuda, K. Takashima, A. Mizuno, J.I.B. Wilson, S. Cunningham, Appl. Phys. Lett. 99, 191504 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    K. Niemi, C. O’Neill, L.J. Cox, J. Waskoenig, W.B. Hyland, S.J. McMahon, S. Reuter, F.J. Currell, W.G. Graham, D. O’Connell, T. Gans, AIP Conf. Proc. 1438, 23 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    X. Zhang, S. Ptasinska, J. Phys. D 47, 145202 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    W.-C. Zhu, Q. Li, X.-M. Zhu, Y.-K. Pu, J. Phys. D. 42, 202002 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    A. Schmidt-Bleker, S.A. Norberg, J. Winter, E. Johnsen, S. Reuter, K.D. Weltmann, M.J. Kushner, Plasma Sources Sci. Technol. 24, 035022 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    M. Klas, S. Ptasinska, Plasma Sources Sci. Technol. 22, 025013 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    N. Mericam-Bourdet, M. Laroussi, A. Begum, E. Karakas, J. Phys. D. 42, 055207 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    S. Lehnert, Biomolecular Action of Ionizing Radiation, 1st edn. (Taylor & Francis Group, New York, London, 2008)Google Scholar
  46. 46.
    Q. Xiong, X.P. Lu, K. Ostrikov, Y. Xian, C. Zou, Z. Xiong, Y. Pan, Phys. Plasmas 17, 043506 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    C. Giustranti, C. Perez, S. Rousset, E. Balanzat, E. Sage, J. Chim. Phys. 96, 132 (1999)CrossRefGoogle Scholar
  48. 48.
    J. Jarrige, M. Laroussi, E. Karakas, Plasma Sources Sci. Technol. 19, 065005 (2010)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Radiation Laboratory and Department of Physics, University of Notre DameNotre DameUnited States

Personalised recommendations