On the thermodynamic properties of thermal plasma in the flame kernel of hydrocarbon/air premixed gases

  • Omid AskariEmail author
  • Gian Paolo Beretta
  • Kian Eisazadeh-Far
  • Hameed Metghalchi
Regular Article


Thermodynamic properties of hydrocarbon/air plasma mixtures at ultra-high temperatures must be precisely calculated due to important influence on the flame kernel formation and propagation in combusting flows and spark discharge applications. A new algorithm based on the complete chemical equilibrium assumption is developed to calculate the ultra-high temperature plasma composition and thermodynamic properties, including enthalpy, entropy, Gibbs free energy, specific heat at constant pressure, specific heat ratio, speed of sound, mean molar mass, and degree of ionization. The method is applied to compute the thermodynamic properties of H2/air and CH4/air plasma mixtures for different temperatures (1000–100 000 K), different pressures (10-6–100 atm), and different fuel/air equivalence ratios within flammability limit. In calculating the individual thermodynamic properties of the atomic species needed to compute the complete equilibrium composition, the Debye-Huckel cutoff criterion has been used for terminating the series expression of the electronic partition function so as to capture the reduction of the ionization potential due to pressure and the intense connection between the electronic partition function and the thermodynamic properties of the atomic species and the number of energy levels taken into account. Partition functions have been calculated using tabulated data for available atomic energy levels. The Rydberg and Ritz extrapolation and interpolation laws have been used for energy levels which are not observed. The calculated plasma properties are then presented as functions of temperature, pressure and equivalence ratio, in terms of a new set of thermodynamically self-consistent correlations that are shown to provide very accurate fits suitable for efficient use in CFD simulations. Comparisons with existing data for air plasma show excellent agreement.

Graphical abstract


Plasma Physics 


  1. 1.
    O. Askari, S.K. Hannani, R. Ebrahimi, J. Mech. Sci. Technol. 26, 1205 (2012)CrossRefGoogle Scholar
  2. 2.
    F.R. Gilmore, Equilibrium Composition and Thermodynamic Properties of Air to 24 000° K, U.S. Air Force, The Rand Corporation, Report No. RM-1543, 1955Google Scholar
  3. 3.
    F.R. Gilmore, Additional Values for the Equilibrium Composition and Thermodynamic Properties of Air, U.S. Air Force, The RAND Corporation, Report No. RM-2328, 1959Google Scholar
  4. 4.
    C.F. Hansen, S.P. Heims, A review of the thermodynamic, transport and chemical reaction rate properties of high temperature air, National Advisory Committee for Aeronautics (NACA), Report No. TN-4359, 1958Google Scholar
  5. 5.
    C.F. Hansen, Thermodynamic and transport properties of high temperature air, Advisory Group for Aeronautical Research and Development, Report No. 323, 1959Google Scholar
  6. 6.
    C.F. Hansen, Approximation for the thermodynamic and transport properties of high temperature air, National Aeronautics and Space Administration (NASA), Report No. R-50, 1960Google Scholar
  7. 7.
    B.M. Rosenbaum, L. Levitt, Thermodynamic Properties of Hydrogen from Room Temperature to 100 000 K, National Aeronautics and Space Administration (NASA), Report No. TN-1107, 1962Google Scholar
  8. 8.
    W.J. Lick, H.W. Emmons, Thermodynamic Properties of Helium to 50 000 K (Harvard University Press, Cambridge, Massachusetts, 1962)Google Scholar
  9. 9.
    W.G. Browne, Thermodynamic Properties of the Earth’s Atmosphere, Radiation and Space Phys. Tech. Mem. No. 2, Missile and Space Div., Gen. Elec. Co., 1962Google Scholar
  10. 10.
    W.G. Browne, Equilibrium Thermodynamic Properties of the Environment of Mars, Advanced Aerospace Phys. Tech. Mem. No. 2, Missile and Space Vehicle Dept., Gen. Elec. Co., 1962Google Scholar
  11. 11.
    W.G. Browne, Thermodynamic Properties of the Venusian Atmosphere - Part 1, Advanced Aerospace Phys. Tech. Mem. No. 13, pt. 1, Missile and Space Vehicle Dept., Gen. Elec. Co., 1962Google Scholar
  12. 12.
    K.S. Drellishak, C.F. Knopp, A.B. Cambel, Phys. Fluids 6, 1280 (1963)ADSCrossRefGoogle Scholar
  13. 13.
    R.F. Kubin, L.L. Presley, Thermodynamic Properties and Mollier Chart for Hydrogen from 300 K to 20 000 K, National Aeronautics and Space Administration (NASA), Report No. SP-3002, 1964Google Scholar
  14. 14.
    R.W. Patch, B.J. McBride, Partition functions and thermodynamic properties to high temperatures for H+3 and H+2, National Aeronautics and Space Administration (NASA), Report No. D-4523, 1958Google Scholar
  15. 15.
    R.W. Patch, Components of a hydrogen plasma including minor species, National Aeronautics and Space Administration (NASA), Report No. D-4993, 1969Google Scholar
  16. 16.
    F. Nelson, Thermodynamic properties of hydrogen-helium plasmas, NASA CR-1861, 1971Google Scholar
  17. 17.
    B. Pateyron, M.F. Elchinger, G. Delluc, P. Fauchais, Plasma Chem. Plasma Process. 12, 421 (1992)CrossRefGoogle Scholar
  18. 18.
    S. Janisson, A. Vardelle, J.F. Coudert, E. Meillot, B. Pateyron, P. Fauchais, J. Thermal Spray Technol. 8, 545 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    E. Sher, J. Ben-ya’ish, T. Kravchik, Combustion and Flame 89, 186 (1992)CrossRefGoogle Scholar
  20. 20.
    M. Capitelli, G. Colonna, C. Gorse, Mol. Phys. Hypersonic Flows 482, 293 (1995)Google Scholar
  21. 21.
    M. Capitelli, G. Colonna, C. Gorse, Eur. Phys. J. D 11, 279 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    D. Bruno, M. Capitelli, C. Catalfamo, D. Giordano, Phys. Plasmas 18, 012308 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    M. Capitelli, S. Longo, G. Petrella, D. Giordano, Plasma Chem. Plasma Process. 25, 659 (2005)CrossRefGoogle Scholar
  24. 24.
    M. Capitelli, G. Colonna, A. D’Angola, Pulsed Power Plasma Sci. 1, 694 (2001)Google Scholar
  25. 25.
    A. D’Angola, G. Colonna, C. Gorse, M. Capitelli, Eur. Phys. J. D 46, 129 (2007)CrossRefGoogle Scholar
  26. 26.
    V. Rat, P. André, J. Aubreton, M.F. Elchinger, P. Fauchais, A. Lefort, Phys. Rev. E 64, 026409 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    A.B. Murphy, Plasma Chem. Plasma Process. 20, 279 (2000)CrossRefGoogle Scholar
  28. 28.
    A.B. Murphy, IEEE Trans. Plasma Sci. 25, 809 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    O. Askari, H. Metghalchi, S. Kazemzadeh Hannani, A. Moghaddas, R. Ebrahimi, H. Hemmati, J. Energy Resour. Technol. 135, 021001 (2012)CrossRefGoogle Scholar
  30. 30.
    O. Askari, H. Metghalchi, S. Kazemzadeh Hannani, H. Hemmati, R. Ebrahimi, J. Energy Resour. Technol. 136, 022202 (2014)CrossRefGoogle Scholar
  31. 31.
    S. Gordon, B.J. Mcbride, Thermodynamic Data to 20 000 K for Monatomic Gases, National Aeronautics and Space Administration (NASA), Glenn Research Center, Report No. TP-1999-208523, 1999Google Scholar
  32. 32.
    H.R. Griem, Phys. Rev. 128, 997 (1962)ADSCrossRefGoogle Scholar
  33. 33.
    W.B. White, S.M. Johnson, G.B. Dantzig, J. Chem. Phys. 28, 751 (1958)ADSCrossRefGoogle Scholar
  34. 34.
    S. Gordon, B.J. Mcbride, Computer program for calculation of complex chemical equilibrium compositions and applications. Part 1: Analysis, National Aeronautics and Space Administration (NASA), Report No. RP-1311, 1994Google Scholar
  35. 35.
    K. Eisazadeh-Far, F. Parsinejad, H. Metghalchi, J.C. Keck, Combustion and Flame 157, 2211 (2010)CrossRefGoogle Scholar
  36. 36.
    K. Eisazadeh-Far, H. Metghalchi, J.C. Keck, J. Energy Resour. Technol. 133, 022201 (2011)CrossRefGoogle Scholar
  37. 37.
    E. Rokni, A. Moghaddas, O. Askari, H. Metghalchi, J. Energy Resour. Technol. 137, 012204 (2014)CrossRefGoogle Scholar
  38. 38.
    O. Askari, A. Moghaddas, A. Alholm, K. Vein, B. Alhazmi, H. Metghalchi, Combustion and Flames 168, 20 (2016)CrossRefGoogle Scholar
  39. 39.
    O. Askari, M. Janbozorgi, R. Greig, A. Moghaddas, H. Metghalchi, Sci. Technol. Built Environ. 21, 220 (2015)CrossRefGoogle Scholar
  40. 40.
    O. Askari, K. Vien, Z. Wang, M. Sirio, H. Metghalchi, J. Appl. Energy (2016)Google Scholar
  41. 41.
    F.T. Mackenzie, J.A. Mackenzie, Our Changing Planet: An Introduction to Earth System Science and Global Environmental Change, 4th edn. (Prentice Hall, 2010)Google Scholar
  42. 42.
    E.P. Gyftopoulos, G.P. Beretta, Thermodynamics: Foundations and Applications (Dover Publications, Mineola, NY, 2005)Google Scholar
  43. 43.
    J.A. Fay, Molecular thermodynamic (Addison-Wesley, Massachusetts, 1965)Google Scholar
  44. 44.
    H.N. Olsen, Phys. Rev. 124, 1703 (1961)ADSCrossRefGoogle Scholar
  45. 45.
    Mc M. Chesney, Can. J. Phys. 42, 2473 (1964)ADSCrossRefGoogle Scholar
  46. 46.
    L.V. Gurvich, I.V. Veyts, C.B. Alcock, Thermodynamic properties of individual substances (Hemisphere Publishing Corporation, New York, 1989)Google Scholar
  47. 47.
    M.W. Zemansky, Heat and Thermodynamics: An Intermediate Textbook for Students of Physics, Chemistry, and Engineering, 4th edn. (McGraw-Hill, New York, 1957)Google Scholar
  48. 48.
    H. Myers, J.H. Buss, S.W. Benson, Planetary Space Science 3, 257 (1961)ADSCrossRefGoogle Scholar
  49. 49.
    H.R. Griem, Principle of Plasma Spectroscopy (McGraw-Hill, 1964)Google Scholar
  50. 50.
    C.E. Moore, Atomic energy levels, U.S. Department of Commerce, National Bureau of Standards, NSRDS-NBS 35, Vol. 1. (1971)Google Scholar
  51. 51.
    H.G. Kuhn, Atomic Spectra (Academic Press, New York, 1962)Google Scholar
  52. 52.
    J. Cooper, Rep. Prog. Phys. 35, 34 (1966)Google Scholar
  53. 53.
    Y.B. Zel’dovich, Y.P. Raizer, W.D. Hayes, R.F. Probstein, Physics of shock waves and high temperature hydrodynamics phenomena (Academic Press, New York and London, 1966)Google Scholar
  54. 54.
    J. Hilsenrath, M. Klein, Tables of Thermodynamic Properties of Air in Chemical Equilibrium Including Second Virial Corrections From 1500 K to 150 000 K, AEDC-TR-65-58, U.S. Air Force, Mar. 1965Google Scholar
  55. 55.
    M. Capitelli, E.F. Varracchio, Rev. Int. Htes Temp. Refract. 14, 195 (1977)Google Scholar
  56. 56.
    R.M. Sevast’yanov, R.A. Chernyavskaya, J. Eng. Phys. 51, 851 (1986)CrossRefGoogle Scholar
  57. 57.
    Y. Cressault, A. Gleizes, G. Riquel, J. Phys. D 45, 265202 (2012)ADSCrossRefGoogle Scholar
  58. 58.
    B. Bottin, Progress Aerospace Sci. 36, 547 (2000)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Omid Askari
    • 1
    Email author
  • Gian Paolo Beretta
    • 2
  • Kian Eisazadeh-Far
    • 3
  • Hameed Metghalchi
    • 1
  1. 1.Northeastern UniversityBostonUSA
  2. 2.Università di Brescia, Dipartimento di Ingegneria Meccanica e IndustrialeBresciaItaly
  3. 3.Tula TechnologySan JoseUSA

Personalised recommendations