Laser field induced optical gain in a group III-V quantum wire

  • Subramanian Saravanan
  • Amalorpavam John PeterEmail author
  • Chang Woo Lee
Regular Article


Effect of intense high frequency laser field on the electronic and optical properties of heavy hole exciton in an InAsP/InP quantum well wire is investigated taking into consideration of the spatial confinement. Laser field induced exciton binding energies, optical band gap, oscillator strength and the optical gain in the InAs0.8P0.2/InP quantum well wire are studied. The variational formulism is applied to find the respective energies. The laser field induced optical properties are studied. The optical gain as a function of photon energy, in the InAs0.8P0.2/InP quantum wire, is obtained in the presence of intense laser field. The compact density matrix method is employed to obtain the optical gain. The results show that the 1.55 μm wavelength for the fibre optic telecommunication applications is achieved for 45 Å wire radius in the absence of laser field intensity whereas the 1.55 μm wavelength is obtained for 40 Å if the amplitude of the laser field amplitude parameter is 50 Å. The characterizing wavelength for telecommunication network is optimized when the intense laser field is applied for the system. It is hoped that the obtained optical gain in the group III-V narrow quantum wire can be applied for fabricating laser sources for achieving the preferred telecommunication wavelength.

Graphical abstract


Optical Phenomena and Photonics 


  1. 1.
    M. Bouhassoune, R. Charrour, M. Fliyou, D. Bria, A. Nougaoui, J. Appl. Phys. 91, 232 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    Ning Li, Kang-Xian Guo, Shuai Shao, Superlatt. Microstruct. 50, 461 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    W. Lei, Y.H. Chen, B. Xu, X.L. Ye, Y.P. Zeng, Z.G. Wang, Nanotechnology 16, 1974 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    G. Fasching, F.F. Schrey, W. Brezna, J. Smoliner, G. Strasser, K. Unterrainer, Phys. Stat. Sol. C 2, 3114 (2005)CrossRefGoogle Scholar
  5. 5.
    T. Angelova, A. Cros, A. Cantarero, D. Fuster, Y. González, L. González, J. Appl. Phys. 104, 033523 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    R. Schwertberger, D. Gold, J.P. Reithmaier, A. Forchel, J. Crystal Growth 251, 248 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    V. Donchev, Ts. Ivanov, T. Angelova, A. Cros, A. Cantarero, N. Shtinkov, K. Borisov, D. Fuster, Y. González, L. González, J. Phys.: Conf. Ser. 210, 012041 (2010)ADSGoogle Scholar
  8. 8.
    G. Safarpour, M.A. Izadi, M. Novzari, E. Niknam, Ind. J. Pure Appl. Phys. 53, 247 (2015)Google Scholar
  9. 9.
    W. Huang, F. Jain, J. Appl. Phys. 87, 7354 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    L. Seravalli, P. Frigeri, G. Trevisi, S. Franchi, Appl. Phys. Lett. 92, 213104 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    H. Sari, E. Kasapoglu, I. Sokmen, N. Balkan, Semicond. Sci. Technol. 18, 470 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    L.E. Oliveira, A. Latge, H.S. Brandi, Phys. Stat. Sol. A 190, 667 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    E. Kasapoglu, H. Sari, M. Güne, I. Sökmen, Surf. Rev. Lett. 11, 403 (2004)CrossRefGoogle Scholar
  14. 14.
    Fanyao Qu, P.C. Morais, Phys. Lett. A 310, 460 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    E.C. Niculescu, A. Radu, U.P.B. Sci. Bull. Ser. A 70, 2008Google Scholar
  16. 16.
    M. Gavrila, J.Z. Kaminski, Phys. Rev. Lett. 52, 613 (1984)ADSCrossRefGoogle Scholar
  17. 17.
    F. Ehlotzky, Phys. Lett. A 126, 524 (1988)ADSCrossRefGoogle Scholar
  18. 18.
    M. Pont, N.R. Walet, M. Gavrila, C.W. McCurdy, Phys. Rev. Lett. 61, 939 (1988)ADSCrossRefGoogle Scholar
  19. 19.
    C. González-Santander, T. Apostolova, F. Domínguez-Adame, J. Phys.: Condens. Matter 25, 335802 (2013)Google Scholar
  20. 20.
    H. Kramers, Collected Scientific Papers (North-Holland, Amsterdam, 1956), Vol. 866Google Scholar
  21. 21.
    H. Sari, E. Kasapoglu, I. Sökmen, M. Günes, Phys. Lett. A 319, 211 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    C. González-Santander, F. Domínguez-Adame, Phys. Lett. A 374, 2259 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    M. Marinescu, M. Gavrila, Phys. Rev. A 53, 2513 (1995)ADSCrossRefGoogle Scholar
  24. 24.
    A. Zapata, R.E. Acosta, M.E. Mora-Ramos, C.A. Duque, Nanoscale Res. Lett. 7, 508 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    G. Hollinger, D. Gallet, M. Gendry, C. Santinelli, P. Viktorovitsch, J. Vac. Sci. Technol. B 8, 832 (1990)CrossRefGoogle Scholar
  26. 26.
    Q. Gong, R. Nözel, P.J. van Veldhoven, T.J. Eijkemans, J.H. Wolter, Appl. Phys. Lett. 84, 275 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    D. Gready, G. Eisenstein, V. Ivanov, C. Gilfert, F. Schnabel, A. Rippien, J.P. Reithmaier, C. Bornholdt, IEEE Phot. Technol. Lett. 26, 11 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    N. Eseanu, Phys. Lett. A 374, 1278 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    A. Stintz, T.J. Rotter, K.J. Malloy, J. Cryst. Growth. 255, 266 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    Yu.I. Mazur, V.G. Dorogan, O. Bierwagen, G.G. Tarasov, E.A. DeCuir Jr., S. Noda, Z.Ya. Zhuchenko, M.O. Manasreh, W.T. Masselink, G.J. Salamo, Nanotechnology 20, 065401 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    F. Selmi, S. Coulibaly, Z. Loghmari, I. Sagnes, G. Beaudoin, M.G. Clerc, S. Barbay, Phys. Rev. Lett. 116, 013901 (2016)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Subramanian Saravanan
    • 1
    • 2
  • Amalorpavam John Peter
    • 3
    Email author
  • Chang Woo Lee
    • 4
  1. 1.Research Scholar, R&D Centre, Bharathiar UniversityCoimbatoreIndia
  2. 2.Deptment of Physics, GTN Arts CollegeDindigulIndia
  3. 3.P.G & Research Dept. of Physics, Government Arts College, 625106 MelurMaduraiIndia
  4. 4.Department of Chemical Engineering, College of EngineeringKyung Hee UniversityGyeonggiSouth Korea

Personalised recommendations