On the influence of low-energy ionizing radiation on the amino acid molecule: proline

  • Jelena Tamuliene
  • Liudmila Romanova
  • Vasyl Vukstich
  • Alexander Papp
  • Serhiy Shkurin
  • Laura Baliulyte
  • Alexander Snegursky
Regular Article
Part of the following topical collections:
  1. Topical Issue: Low-Energy Interactions related to Atmospheric and Extreme Conditions

Abstract

New data on the electron-impact fragmentation of the amino acid proline molecule are presented as being related to the formation of the ionized products due to the influence of low-energy ionizing radiation on the above molecule. An extensive DFT-theory based on the theoretical approach enabled the main pathways of the proline molecules fragmentation to be elucidated. A series of the produced fragments have been identified. The absolute appearance energies for some of them have been both measured experimentally and calculated theoretically. The data of the experimental studies and theoretical calculations are compared and analyzed.

Graphical abstract

References

  1. 1.
    H. Abdoul-Carime, S. Gohlke, E. Illenberger, Chem. Phys. Lett. 402, 497 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    A.F. Fuciarelli, J.D. Zimbrick, Radiation Damage in DNA: Structure/Function Relationship at Early Times (Battelle Press, Columbus, Ohayo, 1995)Google Scholar
  3. 3.
    D.F. Hunt, J.R. Yates III, J. Shabanowitz, S. Winston, C.R. Hauer, Proc. Natl. Acad. Sci. USA 82, 6233 (1986)ADSCrossRefGoogle Scholar
  4. 4.
    D.J. Harvan, J.R. Hass, W.E. Wilson, C. Hamm, R.K. Boyd, H. Yajima, D.G. Klapper, Biomed. Environ. Mass Spectrom. 14, 281 (1987)CrossRefGoogle Scholar
  5. 5.
    X.J. Tang, P. Thibault, R.K. Boyd, Anal. Chem. 65, 2824 (1993)CrossRefGoogle Scholar
  6. 6.
    Y. Wang, J. Johansson, W.J. Griffiths, 14, 2182 (2000)Google Scholar
  7. 7.
    J.A. Loo, C.G. Edmonds, R.D. Smith, Anal. Chem. 65, 425 (1993)CrossRefGoogle Scholar
  8. 8.
    Nai-Ping Dong, Liang-Xiao Zhang, Yi-Zeng Liang, Int. J. Mass Spectrom. 308, 89 (2011)Google Scholar
  9. 9.
    National Institute of Standards, Standard Reference Database: Chemistry Webbook, http://webbook.nist.gov
  10. 10.
    A.V. Snegursky, J. Tamuliene, L.G. Romanova, V.S. Vukstich, Amino acid Molecules Fragmentation by Low-energy Electrons (Nova Science Publishers, New York, 2014)Google Scholar
  11. 11.
    A.V. Snegursky, J. Tamuliene, V.S. Vukstich, L.G. Romanova, Methionine Molecule Electron-Impact-Induced Fragmentation, in Mechanisms and Chemical Structure in Methionine, Biosynthesis, Chemical Structure and Toxicity, edited by A.V. Snegursky (Nova Science Publishers, New York, 2013)Google Scholar
  12. 12.
    J. Tamuliene, V.S. Vukstich, L.G. Romanova, A.V. Papp, T.A. Snegurskaya, A.V. Snegursky, L. Baliulyte, in 5th Int. Conf. Radiat. Interact. Mater. Abstr. Contr. Pap. Kaunas. (2014)Google Scholar
  13. 13.
    V.S. Vukstich, L.G. Romanova, I.G. Megela, A.V. Snegursky, Tech. Phys. Lett. 40, 263 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    V.S. Vukstich, A.I. Imre, A.V. Snegursky, Instr. Exper. Tech. 54, 66 (2011)CrossRefGoogle Scholar
  15. 15.
    A. Kraj, D.M. Desiderio, N.M. Nibbering, in Mass Spectrometry: Instrumentation, Interpretation, and Applications, edited by R. Ekman, J. Silberring, A. Westman-Brinkmalm (John Wiley & Sons, 2009)Google Scholar
  16. 16.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993)ADSCrossRefGoogle Scholar
  17. 17.
    R.A. Kendall, T.H. Dunning Jr., R.J. Harrison, J. Chem. Phys. 96, 6796 (1992)ADSCrossRefGoogle Scholar
  18. 18.
    J.T. Bursey, M.M. Bursey, D.G.I. Kingston, Chem. Rev. 73, 231 (1973)CrossRefGoogle Scholar
  19. 19.
    Gaussian 03, Revision C.02 (Gaussian, Inc., Wallingford CT, 2004)Google Scholar
  20. 20.
    S. Mata, V. Vaquero, C. Cabezas, I. Peña, C. Pérez, J.C. López, J.L. Alonso, Phys. Chem. Chem. Phys. 11, 4141 (2009)CrossRefGoogle Scholar
  21. 21.
    A. Lesarri, S. Mata, E.J. Cocinero, S. Blanco, J.C. López, J.L. Alonso, Angew. Chem. 114, 4867 (2002)CrossRefGoogle Scholar
  22. 22.
    T.-Y. Kim, S.J. Valentine, D.E. Clemmer, J.P. Reilly, J. Am. Soc. Mass Spectrom. 21, 1455 (2010)CrossRefGoogle Scholar
  23. 23.
    J. Song, K. Burrage, Z. Yuan, T. Huber, BMC Bioinformatics 7, 124 (2006)CrossRefGoogle Scholar
  24. 24.
    N.A. Pierson, L. Chen, D.H. Russell, D.E. Clemmer, J. Am. Chem. Soc. 135, 3186 (2013)CrossRefGoogle Scholar
  25. 25.
    G. Hanel, B. Gstir, T. Fiegele, F. Hagelberg, K. Becker, P. Scheier, A. Snegursky, T. Märk, J. Chem. Phys. 116, 2456 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    Shan Xi Tian, Jinlong Yang, Angew. Chem. 118, 2123 (2006)CrossRefGoogle Scholar
  27. 27.
    R.S. Mulliken, J. Chem. Phys. 23, 1833 (1955)ADSCrossRefGoogle Scholar
  28. 28.
    O. Plekan, V. Feyer, R. Richter, M. Coreno, M. de Simone, K.C. Prince, V. Carravetta, J. Phys. Chem. A 111, 10998 (2007)CrossRefGoogle Scholar
  29. 29.
    D. Dehareng, G. Dive, Int. J. Mol. Sci. 5, 301 (2004)CrossRefGoogle Scholar
  30. 30.
    A.F. Lago, L.H. Coutinho, R.R.T. Marinho, A.N. de Brito, G.G.B. de Souza, Chem. Phys. 307, 9 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    P. Sulzer, E. Alizadeh, A. Mauracher, T.D. Märk, P. Scheier, Int. J. Mass Spectrom. 277, 274 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    H. Abdoul-Carime, E. Illenberg, Chem. Phys. Lett. 397, 309 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    L.H. Coutinho, M.G.P. Homem, R.L. Cavasso-Filho, R.R.T. Marinho, A.F. Lago, G.G.B. de Souza, A.N. de Brito, Braz. J. Phys. 35, 940 (2005)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jelena Tamuliene
    • 1
  • Liudmila Romanova
    • 2
  • Vasyl Vukstich
    • 2
  • Alexander Papp
    • 2
  • Serhiy Shkurin
    • 2
  • Laura Baliulyte
    • 1
  • Alexander Snegursky
    • 2
  1. 1.Vilnius University, Institute of Theoretical Physics and AstronomyVilniusLithuania
  2. 2.Institute of Electron Physics, Ukr. Nat. Acad. Sci.UzhgorodUkraine

Personalised recommendations