Skip to main content

Computational study of dissociative electron attachment to π-allyl ruthenium (II) tricarbonyl bromide

Abstract

Motivated by the current interest in low energy electron induced fragmentation of organometallic complexes in focused electron beam induced deposition (FEBID) we have evaluated different theoretical protocols for the calculation of thermochemical threshold energies for DEA to the organometallic complex π-allyl ruthenium (II) tricarbonyl bromide. Several different computational methods including density functional theory (DFT), hybrid-DFT and coupled cluster were evaluated for their ability to predict these threshold energies and compared with the respective experimental values. Density functional theory and hybrid DFT methods were surprisingly found to have poor reliability in the modelling of several DEA reactions; however, the coupled cluster method LPNO-pCCSD/2a was found to produce much more accurate results. Using the local correlation pair natural orbital (LPNO) methodology, high level coupled cluster calculations for open-shell systems of this size are now affordable, paving the way for reliable theoretical DEA predictions of such compounds.

Graphical abstract

This is a preview of subscription content, access via your institution.

References

  1. I. Utke, P. Hoffmann, J. Melngailis, J. Vaccum Sci. Technol. B 26, 1197 (2008)

    Article  Google Scholar 

  2. W.F. van Dorp, C.W. Hagen, J. Appl. Phys. 104, 081301 (2008)

    ADS  Article  Google Scholar 

  3. J. Schaefer, J. Hoelzl, Thin Solid Films 13, 81 (1972)

    ADS  Article  Google Scholar 

  4. A.P. Knights, P.G. Coleman, Appl. Surf. Sci. 85, 43 (1995)

    ADS  Article  Google Scholar 

  5. N. Silvis-Cividjian, C.W. Hagen, L.H.A. Leunissen, P. Kruit, Microelectron. Eng. 61-62, 693–699 (2002)

    Article  Google Scholar 

  6. A. Botman, D.A.M. de Winter, J.J.L. Mulders, J. Vaccum Sci. Technol. B 26, 2460 (2008)

    Article  Google Scholar 

  7. R.M. Thorman, T.P. Kumar, R., D.H. Fairbrother, O. Ingólfsson, Beilstein J. Nanotechnol. 6, 1904 (2015)

    Article  Google Scholar 

  8. O. May, D. Kubala, M. Allan, Phys. Chem. Chem. Phys. 14, 2979 (2012)

    Article  Google Scholar 

  9. M. Allan, J. Chem. Phys. 134, 204309 (2011)

    ADS  Article  Google Scholar 

  10. S. Engmann, M. Stano, Š. Matejčík, O. Ingólfsson, Phys. Chem. Chem. Phys. 14, 14611 (2012)

    Article  Google Scholar 

  11. S. Engmann, M. Stano, Š. Matejčík, O. Ingólfsson, Angew. Chem. Int. Ed. Engl. 50, 9475 (2011)

    Article  Google Scholar 

  12. S. Engmann, M. Stano, P. Papp, M.J. Brunger, Š. Matejčík, O. Ingólfsson, J. Chem. Phys. 138, 044305 (2013)

    ADS  Article  Google Scholar 

  13. I. Bald, J. Langer, P. Tegeder, O. Ingólfsson, Int. J. Mass Spectrom. 277, 4 (2008)

    ADS  Article  Google Scholar 

  14. R.M. Thorman, J.A. Brannaka, L. McElwee-White, O. Ingólfsson (in preparation)

  15. A.D. Becke, Phys. Rev. A 38, 3098 (1988)

    ADS  Article  Google Scholar 

  16. J.P. Perdew, Phys. Rev. B 33, 8822 (1986)

    ADS  Article  Google Scholar 

  17. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Article  Google Scholar 

  18. C. Adamo, V. Barone, J. Chem. Phys. 110, 6158 (1999)

    ADS  Article  Google Scholar 

  19. L.M.J. Huntington, M. Nooijen, J. Chem. Phys. 133, 184109 (2010)

    ADS  Article  Google Scholar 

  20. L.M.J. Huntington, A. Hansen, F. Neese, M. Nooijen, J. Chem. Phys. 136, 064101 (2012)

    ADS  Article  Google Scholar 

  21. F. Neese, A. Hansen, D.G. Liakos, J. Chem. Phys. 131, 064103 (2009)

    ADS  Article  Google Scholar 

  22. F. Neese, WIREs Comput. Mol. Sci. 2, 73 (2012)

    Article  Google Scholar 

  23. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005)

    Article  Google Scholar 

  24. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132, 154104 (2010)

    ADS  Article  Google Scholar 

  25. S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 32, 1456 (2011)

    Article  Google Scholar 

  26. E. van Lenthe, E.J. Baerends, J.G. Snijders, J. Chem. Phys. 99, 4597 (1993)

    ADS  Article  Google Scholar 

  27. C. van Wüllen, J. Chem. Phys. 109, 392 (1998)

    ADS  Article  Google Scholar 

  28. D.A. Pantazis, X.-Y. Chen, C.R. Landis, F. Neese, J. Chem. Theory Comput. 4, 908 (2008)

    Article  Google Scholar 

  29. T.H. Dunning, J. Chem. Phys. 90, 1007 (1989)

    ADS  Article  Google Scholar 

  30. R.A. Kendall, T.H. Dunning, R.J. Harrison, J. Chem. Phys. 96, 6796 (1992)

    ADS  Article  Google Scholar 

  31. K.A. Peterson, D. Figgen, M. Dolg, H. Stoll, J. Chem. Phys. 126, 124101 (2007)

    ADS  Article  Google Scholar 

  32. K.A. Peterson, D. Figgen, E. Goll, H. Stoll, M. Dolg, J. Chem. Phys. 119, 11113 (2003)

    ADS  Article  Google Scholar 

  33. F. Neese, J. Am. Chem. Soc. 128, 10213 (2006)

    Article  Google Scholar 

  34. E.H. Bjarnason, B. Ómarsson, S. Engmann, F.H. Ómarsson, O. Ingólfsson, Eur. Phys. J. D 68, 121 (2014)

    ADS  Article  Google Scholar 

  35. J.A. Spencer, J.A. Brannaka, M. Barclay, L. McElwee-White, D.H. Fairbrother, J. Phys. Chem. C 119, 15349 (2015)

    Article  Google Scholar 

  36. M. Bühl, H. Kabrede, J. Chem. Theory Comput. 2, 1282 (2006)

    Article  Google Scholar 

  37. M.P. Waller, H. Braun, N. Hojdis, M. Bühl, J. Chem. Theory Comput. 3, 2234 (2007)

    Article  Google Scholar 

  38. M. Bühl, C. Reimann, D.A. Pantazis, T. Bredow, F. Neese, J. Chem. Theory Comput. 4, 1449 (2008)

    Article  Google Scholar 

  39. M.M. Quintal, A. Karton, M.A. Iron, A.D. Boese, J.M. Martin, J. Phys. Chem. A 110, 709 (2006)

    Article  Google Scholar 

  40. C.A. Jiménez-Hoyos, B.G. Janesko, G.E. Scuseria, J. Phys. Chem. A 113, 11742 (2009)

    Article  Google Scholar 

  41. T. Weymuth, E.P.A. Couzijn, P. Chen, M. Reiher, J. Chem. Theory Comput. 10, 3092 (2014)

    Article  Google Scholar 

  42. C. Blondel, P. Cacciani, C. Delsart, R. Trainham, Phys. Rev. A 40, 3698 (1989)

    ADS  Article  Google Scholar 

  43. C. Riplinger, P. Pinski, U. Becker, E.F. Valeev, F. Neese, J. Chem. Phys. 144, 024109 (2016)

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ragnar Bjornsson or Oddur Ingólfsson.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thorman, R., Bjornsson, R. & Ingólfsson, O. Computational study of dissociative electron attachment to π-allyl ruthenium (II) tricarbonyl bromide. Eur. Phys. J. D 70, 164 (2016). https://doi.org/10.1140/epjd/e2016-70166-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-70166-9