Effect of gold nanoparticles on the optical properties of Rhodamine 6G

Regular Article

Abstract

Gold nanoparticles are synthesized by the laser ablation method and characterized by transmission electron microscopy and UV-visible absorption spectroscopy. The absorption and emission spectra and powers of Rhodamine 6G in the absence and presence of 27 nm diameter gold nanoparticles were studied. Empirical measurements represented that presence of gold nanoparticles lead to decrease the fluorescence power and fluorescence quantum yield, and increase the absorbance and absorbed power of Rhodamine 6G. Also, Stern-Volmer quenching constant of dye in proximity of nanoparticles shows high value which implies efficient quenching of the dye fluorescence by gold nanoparticles. Fluorescence quantum yield, radiative and nonradiative decay rate of Rhodamine 6G-gold nanoparticles assembly, in parallel orientation, as a function of dye’s dipole moment distance from gold nanoparticle’s surface, based on Gersten-Nitzan model, are calculated. Calculations show variations of the fluorescence quenching is strongly depended on the distance between the dye molecules and the Nps’ surface. Also, calculated radiative decay rate indicates good agreement with the experimental value, and results of the ratio of the nonradiative to the radiative decay rate of Rhodamine 6G-gold nanoparticles mixture show nonradiative energy transfer is better explained in terms of NSET rather than FRET mechanism.

Graphical abstract

Keywords

Optical Phenomena and Photonics 

References

  1. 1.
    J.R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic, New York, 1999)Google Scholar
  2. 2.
    R.D. Powell, C.M. Halsey, D.L. Spector, S.L. Kaurin, J. McCann, J.F. Hainfeld, J. Histochem. Cytochem. 45, 947 (1997)CrossRefGoogle Scholar
  3. 3.
    R.D. Powell, C.M. Halsey, J.F. Hainfeld, Microsc. Res. Tech. 42, 2 (1998)CrossRefGoogle Scholar
  4. 4.
    G. Peleg, A. Lewis, M. Linial, L.M. Loew, Proc. Natl. Acad. Sci. USA 96, 6700 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    B. Dubertret, M. Calame, A. Libchaber, J. Nat. Biotechnol. 19, 365 (2001)CrossRefGoogle Scholar
  6. 6.
    O. Stranik, H.M. McEvoy, C. McDonagh, B.D. MacCraith, Sensors Act. B 107, 148 (2005)CrossRefGoogle Scholar
  7. 7.
    S. Adeyemi Oluyomi, A. Sulaiman Faoziyat, J. Biomed. Res. 29, 145 (2015)Google Scholar
  8. 8.
    M. Pooja Tiwari, V. Komal, A. Vida Dennis, S.R. Singh, Nanomaterials 1, 31 (2011)CrossRefGoogle Scholar
  9. 9.
    PK. Jain, X. Huang, I.H. El-Sayed, M.A. El-Sayed, Acc. Chem. Res. 41, 1578 (2008)CrossRefGoogle Scholar
  10. 10.
    D.D. Evanoff, G. Chumanov, ChemPhysChem 6, 1221 (2005)CrossRefGoogle Scholar
  11. 11.
    J.H. Wang, J.D. Bartlett, A.C. Dunn, S. Small, S.L. Willis, M.J. Driver, A.L. Lewis, J. Microsc. 217, 216 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    G. Majer, J.P. Melchior, J. Chem. Phys. 140, 094201 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    F.P. Shafer, Dye Laser (Springer-Verlag, Berlin, 1990)Google Scholar
  14. 14.
    F.J. Duarte, L.W. Hillman, Dye Laser Principle (Academic Press, New York, 1990)Google Scholar
  15. 15.
    C.E. Moeller, C.M. Verber, A.H. Adelman, Appl. Phys. Lett. 18, 278 (1971)ADSCrossRefGoogle Scholar
  16. 16.
    S.A. Ahmed, J.S. Gergerly, D. Infante, J. Chem. Phys. 61, 1584 (1974)ADSCrossRefGoogle Scholar
  17. 17.
    P.J. Sebastain, K. Sathianandan, Opt. Commun. 32, 422 (1980)ADSCrossRefGoogle Scholar
  18. 18.
    E.G. Marason, Opt. Commun. 40, 212 (1982)ADSCrossRefGoogle Scholar
  19. 19.
    E. Ippen, C. Shank, A. Dienes, IEEE J. Quantum Electronics 7, 178 (1971)ADSCrossRefGoogle Scholar
  20. 20.
    B. Karthikeyan, J. Appl. Phys. 108, 084311 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    T. Förster, Ann. Phys. 2, 55 (1948)CrossRefGoogle Scholar
  22. 22.
    G. Mie, Ann. Phys. 25, 377 (1908)CrossRefGoogle Scholar
  23. 23.
    J. Gersten, A. Nitzan, J. Chem. Phys. 75, 1139 (1981)ADSCrossRefGoogle Scholar
  24. 24.
    J.R. Lakowicz, Anal. Biochem. 298, 1 (2001)CrossRefGoogle Scholar
  25. 25.
    T. Pal, N.R. Jana, T. Sau, Phys. Chem. 49, 127 (1997)ADSGoogle Scholar
  26. 26.
    P.R. Selvin, Nat. Struct. Mol. Biol. 7, 730 (2000)CrossRefGoogle Scholar
  27. 27.
    V.V. Mokashi, A.H. Gore, V. Sudarsan, M.C. Rath, S.H. Han, S.R. Patil, G.B. Kolekar, J. Photochem. Photobiol. B 113, 63 (2012)CrossRefGoogle Scholar
  28. 28.
    D. Ghosh, A. Girigoswami, N. Chattopadhyay, J. Photochem. Photobiol. A 242, 44 (2012)CrossRefGoogle Scholar
  29. 29.
    G.K. Darbha, A. Ray, P.C. Ray, ACS Nano 1, 208 (2007)CrossRefGoogle Scholar
  30. 30.
    S. Pyne, G.P. Sahoo, D.K. Bhui, H. Bar, P. Sarkar, A. Maity, A. Misra, Sensors Act. B 160, 1141 (2011)CrossRefGoogle Scholar
  31. 31.
    A.R. Clapp, I.L. Medintz, H.T. Uyeda, B.R. Fisher, E.R. Goldman, M.G. Bawendi, H. Mattoussi, J. Am. Chem. Soc. 127, 18212 (2005)CrossRefGoogle Scholar
  32. 32.
    D. Yang, S. Xu, Q. Chen, Y. Wang, Colloids Surf. A 329, 38 (2008)CrossRefGoogle Scholar
  33. 33.
    C.S. Yun, A. Javier, T.L. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N.O. Reich, G.F. Strouse, J. Am. Chem. Soc. 127, 3115 (2005)CrossRefGoogle Scholar
  34. 34.
    T.L. Jennings, M.P. Singh, G.F. Strouse, J. Am. Chem. Soc. 128, 5462 (2006)CrossRefGoogle Scholar
  35. 35.
    T.L. Jennings, J.C. Schlatterer, M.P. Singh, N.L. Greenbaum, G.F. Strouse, Nano Lett. 6, 1318 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    P.C. Ray, A. Fortner, G.K. Darbha, J. Phys. Chem. B 110, 20745 (2006)CrossRefGoogle Scholar
  37. 37.
    L. Dong, F. Ye, J. Hu, S. Popov, A.T. Friberg, M. Muhammed, J. Eur. Opt. Soc. 6, 11019 (2011)CrossRefGoogle Scholar
  38. 38.
    S. Chatterjee, J.B. Lee, N.V. Valappil, D. Luo, V.M. Menon, Biomed. Opt. Express 2, 1727 (2011)CrossRefGoogle Scholar
  39. 39.
    D. Ghosh, N. Chattopadhyay, Opt. Photon. J. 3, 18 (2013)CrossRefGoogle Scholar
  40. 40.
    E. Dulkeith, A.C. Morteani, T. Niedereichholz, T.A. Klar, J. Felderman, S.A. Levi, F.C.J.M. van Veggel, D.N. Reinhoudt, M. Moller, D.I. Gittins, Phys. Rev. Lett. 89, 203002 (2002)ADSCrossRefGoogle Scholar
  41. 41.
    M.A. Noginov, M. Vondrova, S.N. Williams, M. Bahoura, V.I. Gavrilenko, S.M. Black, V.P. Drachev, V.M. Shalaev, A. Sykes, J. Opt. A 7, S219 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    F. Hajiesmaeilbaigi, A. Mohammadalipour, J. Sabbaghzadeh, S. Hoseinkhani, H.R. Fallah, Laser Phys. Lett. 3, 252 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    F. Hajiesmaeilbaigi, A. Motamedi, Laser Phys. Lett. 20, 508 (2010)CrossRefGoogle Scholar
  44. 44.
    M. Barzan, F. Hajiesmaeilbaigi, Optical and Quantum Electron. 47, 3467 (2015)CrossRefGoogle Scholar
  45. 45.
    B.R. Kumar, N.S. Basheer, A. Kurian, S.D. George, Appl. Phys. B 115, 335 (2014)ADSCrossRefGoogle Scholar
  46. 46.
    J. Zhu, K. Zhu, L. Huang, Phys. Lett. A 372, 3283 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    H. Han, V. Valle, M.M. Maye, J. Nanotechnol. 23, 43540 (2012)CrossRefGoogle Scholar
  48. 48.
    Y. El-Sayed, M. Gaber, Adv. Nanopart. 1, 54 (2012)CrossRefGoogle Scholar
  49. 49.
    P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Laser and Optics Research SchoolTehranIran

Personalised recommendations