Skip to main content

Numerical simulation of evolution features of the atmospheric-pressure CF4 plasma generated by the pulsed dielectric barrier discharge

Abstract

The atmospheric-pressure CF4 plasma has the high application potential in the field of semiconductor fabrication since it can combine the excellent capability for the CF4 plasma etching with the easy atmospheric-pressure operation. In this work, the fluid model has been carried out to numerically research evolution features of the atmospheric-pressure CF4 plasma generated by the pulsed dielectric barrier discharge. The computational results show that the averaged electron temperature dramatically increases during the rising and the falling phases of the applied voltage pulse, and then swiftly decreases. The discharge current density has the waveform of two bipolar short pulses. The electrons and CF3 + ions form the cathode sheath at the discharge duration. However, the CF3 - and F negative ions take the place of the electrons to sustain the cathode sheath of the CF4 discharge plasma at the time interval between the two bipolar discharge pulses. During the time interval of the two adjacent applied voltage pulses the discharge region is the quasi-neutral plasma region, and meanwhile CF2 + and CF3 - are the dominated charged species. Moreover, F and CF3 maintain the relatively stable high densities and uniform axial distributions during the whole period of the applied voltage.

Graphical abstract

This is a preview of subscription content, access via your institution.

References

  1. 1.

    T. Takeuchi, K. Ishikawa, Y. Setsuhara, K. Takeda, H. Kondo, M. Sekine, M. Hori, J. Phys. D 46, 102001 (2013)

    ADS  Article  Google Scholar 

  2. 2.

    R. Di Mundo, M. Troia, F. Palumbo, M. Trotta, R. d’Agostino, Plasma Process. Polym. 9, 947 (2012)

    Article  Google Scholar 

  3. 3.

    V. Georgieva, A. Bogaerts, R. Gijbels, J. Appl. Phys. 93, 2369 (2003)

    ADS  Article  Google Scholar 

  4. 4.

    S. Wang, X. Xu, Y. Wang, Phys. Plasmas 19, 113506 (2012)

    ADS  Article  Google Scholar 

  5. 5.

    H. Singh, D.B. Graves, J. Appl. Phys. 87, 4098 (2000)

    ADS  Article  Google Scholar 

  6. 6.

    A. Mishra, T.H. Kim, K.N. Kim, G.Y. Yeom, J. Phys. D 45, 475201 (2012)

    ADS  Article  Google Scholar 

  7. 7.

    S. Wang, X. Xu, Y. Wang, Phys. Plasmas 19, 023506 (2012)

    Article  Google Scholar 

  8. 8.

    S.-X. Zhao, F. Gao, Y.-N. Wang, A. Bogaerts, Plasma Sources Sci. Technol. 22, 015017 (2013)

    ADS  Article  Google Scholar 

  9. 9.

    D.J. Economou, J. Phys. D 47, 303001 (2014)

    Article  Google Scholar 

  10. 10.

    N. Mutsukura, M. Shimada, J. Vac. Sci. Technol. A 15, 1828 (1997)

    ADS  Article  Google Scholar 

  11. 11.

    T. Martens, A. Bogaerts, J. van Dijk, Appl. Phys. Lett. 96, 131503 (2010)

    ADS  Article  Google Scholar 

  12. 12.

    J.L. Walsh, D.X. Liu, F. Iza, M.Z. Rong, M.G. Kong, J. Phys. D 43, 032001 (2010)

    ADS  Article  Google Scholar 

  13. 13.

    M. Bogaczyk, G.B. Sretenoviæ, H.-E. Wagner, Eur. Phys. J. D 67, 212 (2013)

    ADS  Article  Google Scholar 

  14. 14.

    L. Jia, D.-Z. Yang, H.-C. Shi, W.-C. Wang, S. Wang, Eur. Phys. J. D 68, 113 (2014)

    ADS  Article  Google Scholar 

  15. 15.

    J. Pan, Z. Tan, X. Wang, L. Nie, C. Sha, X. Chen, IEEE Trans. Plasma Sci. 43, 557 (2015)

    ADS  Article  Google Scholar 

  16. 16.

    J.L. Walsh, F. Iza, M.G. Kong, Eur. Phys. J. D 60, 523 (2010)

    ADS  Article  Google Scholar 

  17. 17.

    O. Gabriel, S. Stepanov, J. Meichsner, J. Phys. D 40, 7383 (2007)

    ADS  Article  Google Scholar 

  18. 18.

    X. Lu, Q. Xiong, Z. Xiong, Y. Xian, F. Zhou, J. Hu, W. Gong, C. Zhou, Z. Tang, Z. Jiang, Y. Pan, IEEE Trans. Plasma Sci. 37, 647 (2009)

    ADS  Article  Google Scholar 

  19. 19.

    Z.-H. Bi, Z.-L. Dai, X. Xu, Z.-C. Li, Y.-N. Wang, Phys. Plasmas 16, 043510 (2009)

    ADS  Article  Google Scholar 

  20. 20.

    S.R. Hunter, L.G. Christophorou, J. Chem. Phys. 80, 6150 (1984)

    ADS  Article  Google Scholar 

  21. 21.

    N.V. Mantzaris, A. Boudouvis, E. Gogolides, J. Appl. Phys. 77, 6169 (1995)

    ADS  Article  Google Scholar 

  22. 22.

    Y.-R. Zhang, A. Bogaerts, Y.-N. Wang, J. Phys. D 45, 485204 (2012)

    Article  Google Scholar 

  23. 23.

    S.-X. Zhao, F. Gao, Y.-N. Wang, A. Bogaerts, Plasma Sources Sci. Technol. 21, 025008 (2012)

    ADS  Article  Google Scholar 

  24. 24.

    S.-Y. So, A. Oda, H. Sugawara, Y. Sakai, J. Phys. D 34, 1919 (2001)

    ADS  Article  Google Scholar 

  25. 25.

    A.A. Kulikovsky, J. Comput. Phys. 119, 149 (1995)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jie Pan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pan, J., Li, L., Chen, B. et al. Numerical simulation of evolution features of the atmospheric-pressure CF4 plasma generated by the pulsed dielectric barrier discharge. Eur. Phys. J. D 70, 136 (2016). https://doi.org/10.1140/epjd/e2016-70081-1

Download citation

Keywords

  • Plasma Physics