Low-energy electron-induced dissociation in condensed-phase L-cysteine II: a comparative study on anion desorption from chemisorbed and physisorbed films

  • Elahe Alizadeh
  • Sylvain Massey
  • Léon Sanche
  • Paul A. Rowntree
Regular Article
Part of the following topical collections:
  1. Topical Issue: Low-Energy Interactions related to Atmospheric and Extreme Conditions

Abstract

Due to its multifunctional structure, cysteine is becoming an ideal model molecule for investigating the complex interactions of proteins with metallic surfaces such as gold nanoparticles. We report herein the results of low-energy electron induced degradation of L-cysteine films, chemisorbed on a gold substrate via the thiol group or physisorbed into a clean gold surface. The data were recorded under ultra-high vacuum conditions at room temperature. Anion yields desorbed from these films by the impact of 0.5 to 19 eV electrons provide clear evidence of the efficient decomposition of this amino acid via dissociative electron attachment (i.e., from dissociation of intermediate transient anions located between 5 and 14 eV). The peaks in the desorbed-anion yield functions, associated with DEA, are superimposed on a continuously rising signal attributed to dipolar dissociation. Similar to the results previously observed from physisorbed films, light anionic species, with masses lower than 35 amu, have been detected. In addition, we measured for first time fragments at 14 amu (CH2 -) and 15 amu (CH3 -) desorbing from physisorbed films, as well as heavier fragments of mass 45 and 46 amu desorbing from chemisorbed films.

Graphical abstract

References

  1. 1.
    E. Alizadeh, T.M. Orlando, L. Sanche, Annu. Rev. Phys. Chem. 66, 379 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    E. Alizadeh, L. Sanche, Chem. Rev. 12, 5578 (2012)CrossRefGoogle Scholar
  3. 3.
    B. Boudaïffa, P. Cloutier, D.J. Hunting, M.A. Huels, L. Sanche, Science 287, 1658 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    S. Denifl, S. Ptasiñska, M. Cingel, S. Matejcik, P. Scheier, T.D. Märk, Chem. Phys. Lett. 377, 74 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    H. Abdoul-Carime, S. Gohlke, E. Illenberger, Phys. Rev. Lett. 92, 168103 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    I. Bald, J. Kopyra, E. Illenberger, Angew. Chem. Int. Ed. 45, 4851 (2006)CrossRefGoogle Scholar
  7. 7.
    L. Sanche, Eur. Phys. J. D 35, 367 (2005) and references thereinADSCrossRefGoogle Scholar
  8. 8.
    S. Ptasiñska, S. Denifl, P. Candor, S. Matejcik, P. Scheier, T.D. Märk, Chem. Phys. Lett 403, 107 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    S. Gohlke, A. Rosa, E. Illenberger, F. Brüning, M.A. Huels, J. Chem. Phys. 116, 10164 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    S. Ptasiñska, S. Denifl, A. Abedi, P. Scheier, T.D. Märk, Anal. Bioanal. Chem. 377, 1115 (2003)CrossRefGoogle Scholar
  11. 11.
    H. Abdoul-Carime, E. Illenberger, Chem. Phys. Lett. 397, 309 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    P. Sulzer, E. Alizadeh, A. Mauracher, P. Scheier, T.D. Märk, Int. J. Mass Spectrom. 277, 274 (2008)CrossRefGoogle Scholar
  13. 13.
    H. Abdoul-Carime, S. Gohlke, E. Illenberger, Phys. Chem. Chem. Phys. 6, 161 (2004)CrossRefGoogle Scholar
  14. 14.
    J. Laskin, J.H. Futrell, J. Chem. Phys. 116, 4302 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    J. Wang, S.O. Meroueh, Y. Wang, W.L. Hase, Int. J. Mass Spectrom. 230, 57 (2003)CrossRefGoogle Scholar
  16. 16.
    E. Alizadeh, D. Gschliesser, P. Bartl, A. Edtbauer, V. Vizcaino, A. Mauracher, M. Probst, T.D. Märk, S. Ptasiñska, N.J. Mason, S. Denifl, P. Scheier, J. Chem. Phys. 134, 054305 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Y.V. Vasil’ev, B.J. Figard, J. Morre, M.L. Deinzer, J. Chem. Phys. 131, 044317 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    S. Lehnert, Biomolecular Action of Ionizing Radiation (Taylor and Francis, New York, 2008)Google Scholar
  19. 19.
    H. Abdoul-Carime, L. Sanche, Radiat. Res. 160, 86 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    G.A. Gallup, P.D. Burrow, I.I. Fabrikant, Phys. Rev. A 79, 042701 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    H. Abdoul-Carime, C. König-Lehmann, J. Kopyra, B. Farizon, M. Farizon, E. Illenberger, Chem. Phys. Lett. 477, 245 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    J. Kocisek, P. Papp, P. Mach, Y.V. Vasil’ev, M.L. Deinzer, S. Matejcik, J. Phys. Chem. A 114, 1677 (2010)CrossRefGoogle Scholar
  23. 23.
    K. Uvdal, P. Bodo, B. Liedberg, J. Colloid Interface Sci. 149, 162 (1992)ADSCrossRefGoogle Scholar
  24. 24.
    A. Kühnle, T.R. Linderoth, B. Hammer, F. Besenbacher, Nature 415, 891 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    F.R. Rahsepar, L. Zhang, H. Farkhondeh, K.T. Leung, J. Am. Chem. Soc. 136, 16909 (2014)CrossRefGoogle Scholar
  26. 26.
    L. Buimaga-Iarinca, A. Calborean, Phys. Scr. 86, 035707 (2012)CrossRefGoogle Scholar
  27. 27.
    P.K. Jain, W. Qian, M.A. El-Sayed, J. Am. Chem. Soc. 128, 2426 (2006)CrossRefGoogle Scholar
  28. 28.
    C.E. Paulsen, K.S. Carroll, Chem. Rev. 113, 4633 (2013)CrossRefGoogle Scholar
  29. 29.
    Y.Z. Song, F.X. Zhu, Y. Song, J.F. Zhou, X.Z. Chu, F.Y. Wu, A.F. Zhu, C.M. Wei, J. Song, X. Li, J. Xu, Russian J. Phys. Chem. A 87, 80 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    E. Alizadeh, S. Massey, P.A. Rowntree L. Sanche, J. Phys.: Conf. Ser. 635, 012001 (2015)Google Scholar
  31. 31.
    J.A. DeRose, T. Thundat, L.A. Nagahara, S.M. Lindsay, Surf. Sci. 256, 102 (1992)ADSCrossRefGoogle Scholar
  32. 32.
    ChemSpider, The free chemical database, http://www.chemspider.com/Chemical-Structure.4435505.html
  33. 33.
    G. Dodero, L. De Michieli, O. Cavalleri, R. Rolandi, L. Oliveri, A. Daccà, R. Parodi, Colloids Surf. A 175, 121 (2000)CrossRefGoogle Scholar
  34. 34.
    J.F. Watts, J. Wolstenholme, An Introduction to Surface Analysis by XPS and AES (John Wiley & Sons Ltd, 2003)Google Scholar
  35. 35.
    S. Massey, E. Alizadeh, P.A. Rowntree, L. Sanche, Int. J. Mass Spectrom. 394, 33 (2016)CrossRefGoogle Scholar
  36. 36.
    S. Massey, A.D. Bass, M. Steffenhagen, L. Sanche, Langmuir 29, 5222 (2013)CrossRefGoogle Scholar
  37. 37.
    M. Bazin, S. Ptasiñska, A.D. Bass, L. Sanche, Phys. Chem. Chem. Phys. 11, 1610 (2009)CrossRefGoogle Scholar
  38. 38.
    H. Abdoul-Carime, L. Sanche, J. Phys. Chem. B 108, 457 (2004)CrossRefGoogle Scholar
  39. 39.
    K.R. Lykke, K.K. Murray, W.C. Lineberger, Phys. Rev. A 43, 6104 (1991)ADSCrossRefGoogle Scholar
  40. 40.
    S. Ptasiñska, S. Denifl, V. Grill, T.D. Märk, E. Illenberger, P. Scheier, Phys. Rev. Lett. 95, 093201 (2005)ADSCrossRefGoogle Scholar
  41. 41.
    V.S. Prabhudesai, A.H. Kelkar, D. Nandi, E. Krishnakumar, Phys. Rev. Lett. 95, 143202 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    E. Alizadeh, Ph.D thesis, University of Innsbruck, 2009Google Scholar
  43. 43.
    M.G. Curtis, I.C. Walker, J. Chem. Soc. Faraday Trans. 88, 2805 (1992)CrossRefGoogle Scholar
  44. 44.
    V.S. Prabhudesai, D. Nandi, A.H. Kelkar, E. Krishnakumar, J. Chem. Phys. 128, 154309 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    P.A. Rowntree, L. Parenteau, L. Sanche, J. Phys. Chem. 95, 4902 (1991)CrossRefGoogle Scholar
  46. 46.
    P. Cloutier, C. Sicard-Roselli, E. Escher, L. Sanche, J. Phys. Chem. B 111, 1620 (2007)CrossRefGoogle Scholar
  47. 47.
    M. Bertin, D. Cáceres, M.P. Davis, R. Balog, A. Lafosse, N.J. Mason, E. Illenberger, R. Azria, Chem. Phys. Lett. 433, 292 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    D. Antic, L. Parenteau, M. Lepage, L. Sanche, J. Phys. Chem. B 103, 6611 (1999)CrossRefGoogle Scholar
  49. 49.
    H. Budzikiewicz, Angew. Chem. Int. Ed. Engl. 20, 624 (1981)CrossRefGoogle Scholar
  50. 50.
    M.A. Huels, L. Parenteau, L. Sanche, Chem. Phys. Lett. 279, 223 (1997)ADSCrossRefGoogle Scholar
  51. 51.
    S. Massey, E. Gallino, P. Cloutier, M. Tatoulian, L. Sanche, D. Mantovani, D. Roy, Polym. Degrad. Stab. 95, 153 (2010)CrossRefGoogle Scholar
  52. 52.
    M.A. Huels, A.D. Bass, P. Ayotte, L. Sanche, Chem. Phys. Lett. 245, 387 (1995)ADSCrossRefGoogle Scholar
  53. 53.
    D.R. Lide, Handbook of Chemistry Physics, 73th edn. (CRC Press, Boca Raton, FL, 1992-1993)Google Scholar
  54. 54.
    P.H. Kussie, S. Gorina, N. Pavlevitch, V. Marechal, B. Elenbaas, J. Moreau, A.J. Levine, Science 274, 948 (1996)ADSCrossRefGoogle Scholar
  55. 55.
    G.C. Telling, P. Parchi, S.J. DeArmond, P. Cortelli, P. Montagna, R. Gabizon, J. Mastrianni, B. Lugaresi, P. Gambetti, S.B. Prusiner, Science 274, 2079 (1996)ADSCrossRefGoogle Scholar
  56. 56.
    M. Zharnikov, W. Geyer, A. Gölzhäuser, S. Frey, M. Grunze, Phys. Chem. Chem. Phys. 1, 3163 (1999)CrossRefGoogle Scholar
  57. 57.
    M. Zharnikov, S. Frey, K. Heister, M. Grunze, Langmuir 16, 2697 (2000)CrossRefGoogle Scholar
  58. 58.
    O. Cavalleri, L. Oliveri, A. Daccà, R. Parodi, R. Rolandi, Appl. Surf. Sci. 175, 357 (2001)ADSCrossRefGoogle Scholar
  59. 59.
    L. Sanche, L. Parenteau, J. Chem. Phys. 93, 7476 (1990)ADSCrossRefGoogle Scholar
  60. 60.
    L. Sanche, L. Parenteau, Phys. Rev. Lett. 59, 136 (1987)ADSCrossRefGoogle Scholar
  61. 61.
    M.N. Hedhili, P. Cloutier, A.D. Bass, T.E. Madey, L. Sanche, J. Chem. Phys. 125, 094704 (2006)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2016

Authors and Affiliations

  • Elahe Alizadeh
    • 1
  • Sylvain Massey
    • 2
  • Léon Sanche
    • 2
  • Paul A. Rowntree
    • 1
  1. 1.Department of ChemistryUniversity of GuelphOntarioCanada
  2. 2.Group of Radiation Sciences, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, University of SherbrookeQuébecCanada

Personalised recommendations