Skip to main content
Log in

Formation of H̅ in p̅-Ps collisions embedded in plasmas

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Screening effects of plasmas on the formation of antihydrogen (H̅) in an arbitrary s-state from the ground state of the positronium atom (Ps) by antiproton (p̅) impact have been studied within the framework of charge-conjugation and time-reversal invariance. Two types of plasma environments have been considered, namely weakly coupled plasma and dense quantum plasma. For weakly coupled plasma, the interactions among the charged particles in plasma have been represented by Debye-Huckel screening model, whereas for dense quantum plasma, interactions among the charged particles in plasma have been represented by exponential cosine-screened Coulomb potentials. Effects of plasma screening on the antihydrogen formation cross section have been studied in the energy range 15–400 keV of incident antiproton. For the free atomic case, our results agree well with some of the most accurate results available in the literature.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Weisheit, Applied Atomic Collision Physics, edited by C.F. Barnett, M.F.A. Harrison (Academic, New York, 1984), Vol. 2

  2. J.C. Weisheit, Adv. At. Mol. Phys. 25, 101 (1988)

    Article  ADS  Google Scholar 

  3. M.S. Murillo, Atomic Processes in Plasmas, AIP Conf. Proc. No. 381, edited by A.L. Osterheld, W.H. Goldstein (American Institute of Physics, Woodbury, New York, 1996)

  4. Y.-D. Jung, Phys. Plasmas 2, 332 (1995)

    Article  ADS  Google Scholar 

  5. Y.-D. Jung, Phys. Plasmas 4, 21 (1997)

    Article  ADS  Google Scholar 

  6. Y.-D. Jung, Eur. Phys. J. D 12, 351 (2000)

    Article  ADS  Google Scholar 

  7. C.G. Kim, Y.-D. Jung, Phys. Plasmas 5, 2806 (1998)

    Article  ADS  Google Scholar 

  8. L. Liu, J.G. Wang, R.K. Janev, Phys. Rev. A 77, 042712 (2008)

    Article  ADS  Google Scholar 

  9. Y.Y. Qi, J.G. Wang, R.K. Janev, Phys. Rev. A 78, 062511 (2008)

    Article  ADS  Google Scholar 

  10. A. Ghoshal, Y.K. Ho, Eur. Phys. J. D 55, 581 (2009)

    Article  ADS  Google Scholar 

  11. A. Ghoshal, Y.K. Ho, Phys. Scr. 83, 065301 (2011)

    Article  ADS  Google Scholar 

  12. S. Kar, Y.K. Ho, J. Phys. B 44, 015001 (2011)

    Article  ADS  Google Scholar 

  13. S. Chakraborty, Y.K. Ho, Phy. Rev. A 77, 014502 (2008)

    Article  ADS  Google Scholar 

  14. S. Nayek, A. Ghoshal, Eur. Phys. J. D 64, 257 (2011)

    Article  ADS  Google Scholar 

  15. S. Nayek, A. Ghoshal, Phys. Scr. 85, 035301 (2012)

    Article  ADS  Google Scholar 

  16. S. Nayek, A. Ghoshal, Phys. Scr. 88, 045301 (2013)

    Article  ADS  Google Scholar 

  17. S. Nayek, A. Ghoshal, Phys. Plasmas 19, 113501 (2012)

    Article  ADS  Google Scholar 

  18. S. Sen, P. Mandal, P.K. Mukherjee, Eur. Phys. J. D 62, 379 (2011)

    Article  ADS  Google Scholar 

  19. S. Sen, P. Mandal, P.K. Mukherjee, Eur. Phys. J. D 66, 230 (2012)

    Article  ADS  Google Scholar 

  20. J. Ma, Y. Cheng, Y.C. Wang, Y. Zhou, Phys. Plasmas 19, 063303 (2012)

    Article  ADS  Google Scholar 

  21. A. Ghoshal, M.Z.M. Kamali, K. Ratnavelu, Phys. Plasmas 20, 013506 (2013)

    Article  ADS  Google Scholar 

  22. A. Bhattacharya, M.Z.M. Kamali, A. Ghoshal, K. Ratnavelu, Phys. Plasmas 20, 083514 (2013)

    Article  ADS  Google Scholar 

  23. P. Rej, A. Ghoshal, Phys. Plasmas 21, 093507 (2014)

    Article  ADS  Google Scholar 

  24. S. Mukhopadhyay, C. Sinha, Phys. Rev. A 88, 033414 (2013)

    Article  ADS  Google Scholar 

  25. S.-C. Na, Y.-D. Jung, Phys. Lett. A 372, 5605 (2008)

    Article  ADS  Google Scholar 

  26. S.-C. Na, Y.-D. Jung, Phys. Scr. 78, 035502 (2008)

    Article  ADS  Google Scholar 

  27. P.K. Shukla, B. Eliasson, Phys. Lett. A 372, 2897 (2008)

    Article  ADS  Google Scholar 

  28. T. Ramazanov, K. Galiyev, K.N. Dzhumagulova, G. Ropke, R. Redmer, Contrib. Plasma Phys. 43, 39 (2003)

    Article  ADS  Google Scholar 

  29. M. Marklund, P.K. Shukla, Rev. Mod. Phys. 78, 218 (2006)

    Article  Google Scholar 

  30. M. Amoretti et al., Nature 419, 456 (2002)

    Article  ADS  Google Scholar 

  31. G. Gabrielse et al., Phys. Rev. Lett. 89, 213401 (2002)

    Article  ADS  Google Scholar 

  32. Y. Enomoto et al., Phys. Rev. Lett. 105, 243401 (2010)

    Article  ADS  Google Scholar 

  33. E.M. Bass, D.H.E. Dubin, Phys. Plasmas 16, 012101 (2009)

    Article  ADS  Google Scholar 

  34. J. Mitroy, G. Ryzhikh, J. Phys. B 30, L371 (1997)

    Article  ADS  Google Scholar 

  35. J. Mitroy, Phys. Rev. A 52, 2859 (1995)

    Article  ADS  Google Scholar 

  36. J. Mitroy, A.T. Stelbovics, Phys. Rev. Lett. 72, 3495 (1994)

    Article  ADS  Google Scholar 

  37. J. Mitroy, A.T. Stelbovics, J. Phys. B 27, L79 (1994)

    Article  ADS  Google Scholar 

  38. K. Ratnavelu, J. Mitroy, A.T. Stelbovics, J. Phys. B 29, 2775 (1996)

    Article  ADS  Google Scholar 

  39. A. Igarashi, N. Toshima, T. Shirai, J. Phys. B 27, L497 (1994)

    Article  ADS  Google Scholar 

  40. R.J. Whitehead, J.F. McCann, I. Shimamura, Phys. Rev. A 64, 023401 (2001)

    Article  ADS  Google Scholar 

  41. S. Tripathy, C. Sinha, N.C. Sil, Phys. Rev. A 42, 1785 (1990)

    Article  ADS  Google Scholar 

  42. J.W. Humberston, M. Charlton, F.M. Jacobsen, B.I. Deutch, J. Phys. B 20, L25 (1987)

    Article  ADS  Google Scholar 

  43. N. Yamanaka, Y. Kino, Nucl. Instrum. Methods Phys. Res. B 214, 40 (2004)

    Article  ADS  Google Scholar 

  44. A.S. Kadyrov, C.M. Rawlins, A.T. Stelbovics, I. Bray, M. Charlton, Phys. Rev. Lett. 114, 183201 (2015)

    Article  ADS  Google Scholar 

  45. A. Ghoshal, Y.K. Ho, J. Phys. B 43, 115007 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuru Ratnavelu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratnavelu, K., Ghoshal, A., Nayek, S. et al. Formation of H̅ in p̅-Ps collisions embedded in plasmas. Eur. Phys. J. D 70, 80 (2016). https://doi.org/10.1140/epjd/e2016-60730-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-60730-8

Navigation