Skip to main content
Log in

Ionic thermal effects on photo-electron emission within time-dependent density-functional theory

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We study the impact of thermal fluctuations of cluster/molecule shape on photo-electron spectra (PES) and photo-electron angular distributions (PAD) using a detailed time-dependent simulation of the emission dynamics and thermal ionic motion. Basis of the description is time-dependent density-functional theory (TDDFT) coupled to molecular dynamics for ionic motion. Test cases are small Na clusters and the C3 molecule. For Na clusters, we find that PES signals are rather robust for one-photon processes while large smearing of the pattern are observed at lower frequencies in multi-photon processes. This effect can be related to the typical spectral response of the metal clusters. PAD are generally much more robust than PES. The C3 molecule produces a greater variety of thermal response. This happens because this molecule has eigenmodes with much different softness.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993)

    Article  ADS  Google Scholar 

  2. Clusters of Atoms and Molecules I–Theory, Experiment, and Clusters of Atoms, Springer Series in Chemical Physics, edited by H. Haberland (Springer, 1994), Vol. 52

  3. Clusters of Atoms and Molecules II–Solvation and Chemistry of Free Clusters, and Embedded, Supported and Compressed Clusters, Springer Series in Chemical Physics, edited by H. Haberland (Springer, Berlin, 1994), Vol. 56

  4. L. Schweikhard, S. Krückeberg, K. Lützenkirchen, C. Walther, Eur. Phys. J. D 9, 15 (1999)

    Article  ADS  Google Scholar 

  5. F. Federmann, K. Hoffmann, N. Quaas, J.P. Toennies, Eur. Phys. J. D 9, 11 (1999)

    Article  ADS  Google Scholar 

  6. R. Kusche, T. Hippler, M. Schmidt, B.V. Issendorff, H. Haberland, Eur. Phys. J. D 9, 1 (1999)

    Article  ADS  Google Scholar 

  7. T.P. Martin, Phys. Rep. 273, 199 (1993)

    Article  ADS  Google Scholar 

  8. U. Röthlisberger, W. Andreoni, J. Chem. Phys 94, 8129 (1991)

    Article  ADS  Google Scholar 

  9. S.A. Blundell, C. Guet, R.R. Zope, Phys. Rev. Lett. 84, 4826 (2000)

    Article  ADS  Google Scholar 

  10. S. Kümmel, J. Akole, M. Manninen, Phys. Rev. Lett. 84, 3827 (2000)

    Article  ADS  Google Scholar 

  11. C. Ellert, M. Schmidt, C. Schmitt, T. Reiners, H. Haberland, Phys. Rev. Lett. 75, 1731 (1995)

    Article  ADS  Google Scholar 

  12. B. Montag, P.G. Reinhard, Phys. Rev. B 51, 14686 (1995)

    Article  ADS  Google Scholar 

  13. M. Moseler, H. Häkkinen, U. Landman, Phys. Rev. Lett. (2001)

  14. P. Gosh, Introduction to photoelectron spectroscopy (Wiley, New York, 1983)

  15. K.M. McHugh, J.G. Eaton, G.H. Lee, H.W. Sarkas, L.H. Kidder, J.T. Snodgrass, M.R. Manaa, K.H. Bowen, J. Chem. Phys. 91, 3792 (1989)

    Article  ADS  Google Scholar 

  16. G. Wrigge, M.A. Hoffmann, B.V. Issendorff, Phys. Rev. A 65, 063201 (2002)

    Article  ADS  Google Scholar 

  17. J.C. Pinaré, B. Baguenard, C. Bordas, M. Broyer, Euro. Phys. J. D 9, 21 (1999)

    Article  ADS  Google Scholar 

  18. J. Akola, M. Manninen, H. Häkkinen, X. Li, U. Landman, L.S. Wang, Phys. Rev. B 60, R11297 (1999)

    Article  ADS  Google Scholar 

  19. M. Moseler, B. Huber, H. Häkkinen, U. Landman, G. Wrigge, M.A. Hoffmann, B.V. Issendorff, Phys. Rev. B 68, 165413 (2003)

    Article  ADS  Google Scholar 

  20. A. Pohl, P.G. Reinhard, E. Suraud, Phys. Rev. Lett. 84, 5090 (2000)

    Article  ADS  Google Scholar 

  21. A. Pohl, P.G. Reinhard, E. Suraud, Phys. Rev. A 70, 023202 (2004)

    Article  ADS  Google Scholar 

  22. S. Vidal, Z.P. Wang, P.M. Dinh, P.G. Reinhard, E. Suraud, J. Phys. B 43, 165102 (2010)

    Article  ADS  Google Scholar 

  23. P. Wopperer, P.M. Dinh, P.G. Reinhard, E. Suraud, Phys. Rep. 562, 1 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  24. J. Akola, A. Rytkönen, H. Häkkinen, M. Manninen, Eur. Phys. J. D 8, 93 (2000)

    Article  ADS  Google Scholar 

  25. F. Calvayrac, P.G. Reinhard, E. Suraud, C.A. Ullrich, Phys. Rep. 337, 493 (2000)

    Article  ADS  Google Scholar 

  26. P.G. Reinhard, E. Suraud, Introduction to Cluster Dynamics (Wiley-VCH Verlag, Weinheim, 2004)

  27. P. Wopperer, B. Faber, P.M. Dinh, P.G. Reinhard, E. Suraud, Phys. Lett. A 375, 39 (2010)

    Article  ADS  MATH  Google Scholar 

  28. P. Wopperer, B. Faber, P.M. Dinh, P.G. Reinhard, E. Suraud, Phys. Rev. A 82, 063416 (2010)

    Article  ADS  Google Scholar 

  29. E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)

    Article  ADS  Google Scholar 

  30. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

  31. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  32. C. Legrand, E. Suraud, P.G. Reinhard, J. Phys. B 35, 1115 (2002)

    Article  ADS  Google Scholar 

  33. S. Kümmel, M. Brack, P.G. Reinhard, Phys. Rev. B 58, R1774 (1998)

    Article  ADS  Google Scholar 

  34. S. Goedecker, M. Teter, J. Hutter, Phys. Rev. B 54, 1703 (1996)

    Article  ADS  Google Scholar 

  35. B. Montag, P.G. Reinhard, Z. Physik D 33, 265 (1995)

    Article  ADS  Google Scholar 

  36. P.G. Reinhard, P.D. Stevenson, D. Almehed, J.A. Maruhn, M.R. Strayer, Phys. Rev. E 73, 036709 (2006)

    Article  ADS  Google Scholar 

  37. D. Turner, Molecular Photoelectron Spectroscopy (Wiley, New York, 1970)

  38. P. Ghosh, Introduction to photoelectron spectroscopy (John Wiley and Sons, New York, 1983)

  39. P.M. Dinh, P. Romaniello, P.G. Reinhard, E. Suraud, Phys. Rev. A 87, 032514 (2013)

    Article  ADS  Google Scholar 

  40. M. Brack, Rev. Mod. Phys. 65, 677 (1993)

    Article  ADS  Google Scholar 

  41. H. Haberland, T. Hippler, J. Donges, O. Kostko, M. Schmidt, B. von Issendorff, Phys. Rev. Lett. 94, 035701 (2005)

    Article  ADS  Google Scholar 

  42. K.M. McHugh, J.G. Eaton, G.H. Lee, H.W. Sarkas, L.H. Kidder, J.T. Snodgrass, M.R. Manaa, K.H. Bowen, J. Chem. Phys. 91, 3792 (1989)

    Article  ADS  Google Scholar 

  43. C. Bartels, Ph.D. thesis, Albert-Ludwigs-Universität, Freiburg, 2008

  44. F. Fehrer, P.G. Reinhard, E. Suraud, Appl. Phys. A 82, 145 (2005)

    Article  ADS  Google Scholar 

  45. P. Wopperer, P.M. Dinh, P.G. Reinhard, E. Suraud, J. Phys. Conf. Ser. 438, 012010 (2013)

    Article  ADS  Google Scholar 

  46. C.Z. Gao, P. Dinh, P.G. Reinhard, E. Suraud, Ann. Phys. 360, 98 (2015)

    Article  Google Scholar 

  47. F. Calvayrac, P.G. Reinhard, E. Suraud, Ann. Phys. 255, 125 (1997)

    Article  ADS  Google Scholar 

  48. P. Wopperer, P.M. Dinh, E. Suraud, P.G. Reinhard, Phys. Rev. A 85, 015402 (2012)

    Article  ADS  Google Scholar 

  49. P. Wopperer, et al., Phys. Rev. A 91, 042514 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phuong Mai Dinh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, CZ., Dinh, P., Reinhard, PG. et al. Ionic thermal effects on photo-electron emission within time-dependent density-functional theory. Eur. Phys. J. D 70, 26 (2016). https://doi.org/10.1140/epjd/e2016-60624-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-60624-9

Keywords

Navigation